TRS-80° MODEL 4

RSCOBOL

Radio fhaek RGEE:-

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “'Equipment™), and any copies of Radio
Shack software included with the Equipment or licensed separately (the “Software’) meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER.

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation.

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO

SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.
RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an "AS IS basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. E;(c;% Iag gﬁx?gd herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
0 ;

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT" OR "'SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE “EQUIPMENT" OR “SOFTWARE"'. IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR

ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT" OR "SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CNUSOT&i\oE!ER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “EQUIPMENT" OR "SOFTWARE"
INVI :

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought maore than two (2) years
after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs. ’

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on ene computer, subject to the following
provisions;
. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
Title Stn the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to
the Software.
CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
function.
CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically
provided in this Software License. Customer is expressly prohibited from disassembling the Software.
CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in
the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.
CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
ng‘?gl?ﬂ gg distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
U ;
G. Al copyright notices shall be retained on all copies of the Software.

APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
gﬂf;\;ngLicense to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
MER.
B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary
from state to state.

READ ME FIRST

All computer software is subject to change, correction, or improvement as the
manufacturer receives customer comments and experiences. Radio Shack has
established a system to keep you immediately informed of any reported prob-
lems with this software, and the solutions. We have a customer service network
including representatives in many Radio Shack Computer Centers, and a large
group in Fort Worth, Texas, to help with any specific errors you may find in
your use of the programs. We will also furnish information on any improve-
ments or changes that are ‘‘cut in’’ on later producticn versions.

To take advantage of these services, you must do three things:

(1) Send in the postage-paid software registration card included in this manual
immediately. (Postage must be affixed in Canada.)

(R) If you change your address, you must send us a change of address card
(enclosed), listing your old address exactly as it is currently on file with us.

(3) As we furnish updates or ‘‘patches’’, and you update your software, you
must keep an accurate record of the current version numbers on the logs
below. (The version number will be furnished with each update.)

Keep this card in your manual at all times, and refer to the current version
numbers when requesting information or help from us. Thank you.

APPLICATIONS SOFTWARE OP. SYSTEM
VERSION LOG VERSION LOG

01,06.00

875-9242/2/28/83

RS/COBOL USER'S GUIDE

(RM/COBOL 1.6)

for TRS-80 Model 4

PREFACE

This document contains the information required to compile, run and
debug RS/COBOL language programs on the Radio Shack TRS-80 Model 4
Microcomputer under the TRSDOS Disk Operating System.

It assumes the reader is familiar with the RM/COBOL Language, the
general operation of the TRS-80 Model 4 Microcomputer, and the TRSDOS
Operating System. The reader 1is specifically referred to the
following publications:

TRS-80 Model 4 RS/COBOL* Language Manual
TRS-80 Model 4 Operation Manual
TRS-80 Model 4 Disk Operating System Reference Manual

This guide 1is organized such that each chapter fully describes a
particular operational procedure. While the experienced user need
only refer to the appropriate chapter, it is recommended that the
first-time user read the complete guide prior to operation of the
RS/COBOL system.

Copyrights

RS/COBOL™ Software: Copyright 1982 Ryan-McFarland
Corporation. Licensed to Tandy Corporation. All Rights
Reserved.

TRSDOS® Version 6 Operating System: Copyright 1983 Logical
Systems. Licensed to Tandy Corporation. All Rights
Reserved.

RS/COBOL™ User's Guide: Copyright 1983 Ryan-McFarland
Corporation. Licensed to Tandy Corporation. All Rights
Reserved.

COBOL Language Manual: Copyright 1983 Tandy Corporation and
Ryan-McFarland Corporation. Licensed to Tandy Corporation.
All Rights Reserved.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy
Corporation and Ryan-McFarland assume no liability resulting
from any errors or omissions in this manual, or from the use
of the information contained herein.

TRSDOS is a registered trademark of Tandy Corporation
RM/COBOL is a registered trademark of Ryan-McFarland
Corporation

14 987 65 4321

- ii -

Important Note to
Model 4 Users

From time to time Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these enhanced
versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making any

modifications to your existing software packages (applications, languages, or

system utilities):

* Do not convert your Radio Shack software for use with the new version of
TRSDOS unless you are instructed to do so.

« If you're using several different software packages, press the RESET button
whenever you change software.

Overview of the Model 4 COBOL Documentation
Package.

This binder contains the information you need to use the Radio Shack COBOL system. It
assumes you are familiar with the general operation of the Computer, including use of the
TRSDOS operating system.

The COBOL system requires a minimal system of 64K RAM and one disk drive.

The package includes three manuals.
System User’s Guide
Provides general information, start-up procedures, compiler commands, creation and use of a

minimal-system runtime diskette, sample programs, and a sample session. Also included is a
sample session.

CEDIT User’'s Guide

Describes how to create and edit COBOL source files, using the COBOL editor CEDIT, which is
supplied on the Development diskette.

RSCOBOL Language Reference Manual

A complete description of the Radio Shack version of the COBOL programming language.
Newcomers to COBOL should consult a standard COBOL textbook for tutorial material.

TRS-80° MODEL 4

RSCOBOL
SYSTEM
USER'’S GUIDE

General Information,
Compiler Use, Start-Up,
Sample Programs, and
Sample Session

Radio Shaek R

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TABLE OF CONTENTS

Section

CHAPTER 1 THE RS/COBOL COMPILER t¢ecosevcocnsnncncs
1.1 Compiler OVEIVIEW +.eeeesescecnocssenccncsns
1.2 Device AsSSignments ..eeeeeeeseecossscssconnsss
1.3 Executing the Compiler ...ccececeescccsnscnns

1.3.1 Compiler OptiOnS «eeeeeeoececncocacsnns

1.3.2 Compiler MeSSAgeS secescovscsssasscasans

1.3.3 Examples .cecececcecnsne

1.4 The Program Listing ceeeeceseecossccnnsccnnns

4.1 Listing Diagnostics ...
4.2 Diagnostic MeSSages «.cteececscocsccnans

1.
1.4.
CHAPTER 2 THE COBOL RUNTIME ..vcceeecsssssncsccnans
2.1 Runtime OVErVIEW ...ceeeeccrscscosscnsasncas
2.2 Device AsSSignmentsS ...eeescseccsccscocssoncsos
2.3 Executing the Compiled Program .e.c.ceeeeeeese

.1 Runtime Options «eveeeesceneessoessonss
Runtime MeSSaAges .e.cveeerecscconcncncss
Program Terminationcccceusesncass
EXampleS ..ceeeeccocssscecsoscscssoscsacssss
time DiagnoSticCS .eeeeverececccccessoenss
e System Considerations ..cceeeeececacees
RS/COBOL Sequential FilesS .evesesveacss
RM/COBOL Relative FileS ..vseceecssaoss
RS/COBOL Indexed FileS +socesoeoesosacns
RS/COBOL Label ProcessSing eseeeeeceeess
untlme Memory USAge ceeeeeessecconconcscnas

CHAPTER 3 INTERACTIVE DEBUG ¢¢ccccosvcoccecscsccsansas
3.1 Debug OVEIXVIEW ..eeeeeocccensocnncsonsssncss
3.2 User Interaction and Display secesececescons
3.3 Debug CommandsS «.eceeeeccessscecnssscscssssssss

CHAPTER 4 SYSTEM CONSIDERATIONS +cecceeasoessoscsaces

4.1 The ACCEPT and DISPLAY Statements
2 The CALL Statement ..ceceececsscscsssons
3 The COPY Statement ceceecesescesnsscocnss
4.4 The WRITE...ADVANCING ZERO...Statement .
4.5 The STOP RUN numeric Statement «cceeceocecesses

.
e e e e

.

.

CHAPTER 5 INSTALLATION PROCEDURES .:.ccecececcccccns
5.1 Installing RS/COBOL .¢eceesesescsccsosacncss

APPENDIX A SAMPLE SESSION .cceveccsccessacssnssscss

RS/COBOL User's Guide - iii - June,

e e o s

Page

OWOON D WK

15

15
16
16
17
18
18
19
24
24
25
25
27
28

29
29

29

31
31
32
34
35
35

36
36

37

1.6)

CHAPTER 1
THE RS/COBOL COMPILER

1.1 Compiler Overview

The RS/COBOL Compiler operates on a TRS-80 Model 4 Microcomputer under
the TRSDOS Operating System.

Once executed, the Compiler makes a single pass on the source program,
generating object and 1listing files concurrently if desired. Upon
completion it reports compilation results on the console and returns
control to TRSDOS.

Compilation always proceeds to the end of the program, regardless of
the number of source errors found.

A listing of the program is generated showing the original RS/COBOL
source statements, error information, data allocation, Interactive
Debug information and, optionally, a Cross Reference of all program
labels and data items. This listing can be directed to the Console,
the Printer and/or a disk file.

The generated object file is in a form ready for immediate execution
by the RS/COBOL Runtime. Object code is produced such that an attempt
to execute an erroneous statement will terminate execution with an
appropriate error message.

RS/COBOL User's Guide -1 - June, 1983, (ver. 1.6)

1.2 Device Assignments

All communication between the Compiler and the User is through the
system console.

During operation, the Compiler will require one or more of the
following devices:

Console (*DO) compiler command input and compiler messages

Disk source input file

Disk listing file (optional)
Disk object file (optional)
Disk COPY input file (optional)

Console (*D0O) 1listing display (optional)
Printer (*PR) listing print (optional)

Job Log (*JL) Compiler Messages

RS/COBOL User's Guide -2 - June, 1983, (ver. 1.6)

1.3 Executing the Compiler

To compile an RS/COBOL source program, issue the following command to

TRSDOS:

RSCOBOL filespec (options) comment

where:

filespec

options

is the file specification of the RS/COBOL source file to be
compiled; of the form:

filename/ext.password:d

'‘filename' is required.

'/ext' is an optional extension. When omitted, the default
'/CBL' is used.

'.password' is an optional password, Note: if the file was
created with a nonblank password, '.password' becomes a
required field.

':d' is an optional drive specification. When omitted, the
system does an automatic search, starting with drive O.

allows the user to specify compiler and/or file options.
Each option must be specified as shown below, separated by
spaces. The left and right parenthesis are required if any
comments are present.

When no options are specified, the compiler will
automatically generate an object file but no listing output.

RS/COBOL User's Guide -3 - June, 1983, (ver. 1.6)

1.3.1 Compiler Options

=N
'A=N indicates the printer attached does not have automatic
line feed after carriage return capability. RS/COBOL will
terminate each 1line with both a carriage rturn and a line
feed.

D
'D' instructs the compiler to compile all RS/COBOL "Debug"
source lines, identified by a "D" in column 7. This allows
the user selective compilation of RS/COBOL source
statements.
This option has no relationship to the RS/COBOL Runtime
Interactive Debug facility and need not be specified to
allow such debugging.
The default is to treat such lines as comments.

E
'E' instructs the compiler to generate an 'Error Only'
listing instead of a full listing. This option is effective
only when a listing has been specified (L, P and/or T
options).
The listing generated will contain the page heading
information, all source lines 1in error with their
appropriate undermarks and messages, plus all summary
information.
The default is not to generate an error listing.

L L=d

'L' indicates that the compiler listing is to be written to
a disk file with the name of the source file and a
filename-extension of '/LST'. The first available disk is
used, unless the file already exists in which case it 1is

reused.

Specifying a drive number (L=d) indicates that the listing
file is to be written to disk 'd’'.

The default is not to generate a listing file.

RS/COBOL User's Guide -4 - June, 1983, (ver. 1.6)

'0' indicates that the Compiler object output is to be
written to a disk file with the name of the source file and
a filename-extension of '/COB'.

Specifying a drive number (O=d) indicates that the object
file is to Dbe written to disk 'd'. When omitted the first
available disk is used, or an existing file with the same
name is replaced.

'O=N' indicates that no object file is to be generated.

The default is to generate an object file on the first
available file or disk.

P
'‘P' indicates that the listing is to be printed on the
printer.
The default is not to print the listing.

T
'T' indicates the listing is to be displayed on the CRT
(system display).
The default is not to display the listing.

X

'X' indicates a cross-reference of RS/COBOL Procedure and
Data Division names is to Dbe produced. This option is
effective only when a listing has been specified (L, P or T
options).

The default is not to generate a cross-reference.

RS/COBOL User's Guide -5 - June, 1983, (ver. 1.6)

l1.3.2 Compiler Messages

Messages which report the compiler's status, or its ability to
complete the compilation process are reported on the system console as
they are detected. Status messages are also written to the system job

log as they are generated.
TRS-80 Model 4 COBOL Compiler (RM/COBOL Version VV.RR.PP) Copyright
1983 By Tandy Corporation - Licensed from Ryan-McFarland Corporation.

Indicates that the compiler has been loaded and has begun to
compile the specified program. 'version VV.RR.PP' identifies the
version (V), revision (R) and patch level (P) of the Compiler.

Compilation Complete: eeee Errors, wwww Warnings

Indicates that the compilation has been completed. The values of
'eeee' and 'wwww' indicate the number of errors and warnings,
respectively, identified in the source program. This message is
repeated on the listing.

Parameter Error At: vvvvvvvv
Indicates that an unrecoverable error was detected on the command

to execute the compiler. 'wvvvvvvvv' will identify the offending
parameter. The user should reenter the command with the

necessary corrections.

Compilation Cancelled

Compiler cancelled by operator with BREAK key.

RS/COBOL User's Guide -6 - June, 1983, (ver. 1.6)

Compiler Error, No: nnnn

An internal error has occurred which prevents continued
compilation. The value of 'nnnn' identifies the condition which
caused the error.

0001 Pointer overflow
The user program has exceeded internal compiler pointers.
Segment the program and recompile. If this problem still
exists, separate programs into main program with multiple
subroutines.

0002 Roll memory overflow
The user program has exceeded available work space.
Segment the program and recompile.

0003 Program overflow
The program has exceeded an internal compiler limit. One

of the object sections has run out of space. Segment the
program or break it into a main program with multiple
subprograms .

0004 Compiler error
An internal compiler error has been encountered.

0005 Empty source file
An end of file error was encountered when trying to read

the first record of the COBOL source file.

1.3.3 Examples

RSCOBOL PAYROLL (P X)
locates and compiles the source program PAYROLL/CBL, producing an
object file (PAYROLL/COB) on the first available disk and a
listing, with cross-reference, on the printer.

RSCOBOL MORTGAGE/SRC:1 (L=2 0=N)
compiles the source program MORTGAGE/SRC located on the disk in
drive 1, producing a listing file (MORTGAGE/LST) on the disk in

drive 2, and no object file.

RS/COBOL User's Guide -7 - June, 1983, (ver. 1.6)

1.4 The Program Listing

The compiler outputs 'source', 'allocation', and 'summary' listings if
a listing device or file is specified (L, P or T options). When the
'X' option is specified, a 'cross-reference' listing is also produced.

The source listing includes a sequential 1line number, sentence
address, source image, and interspersed diagnostics.

The allocation listing includes the address, size, order, type, and
name of each identifier. The identifier names are indented to show
the record structure. (The order of an identifier is the number of

subscripts it requires).

The summary listing includes the number of errors, the number of
warnings, and the size of the program.

The cross-reference listing includes all identifier names in
alphabetical order, and the line number of each declaration, source,

and destination reference. The line number is surrounded by slashes
if the reference 1is a declaration; asterisks if the reference 1is a
possible modification. References to all paragraphs and sections are
included.

In all listings, numbers in decimal are represented as ddd...d,
numbers in hexadecimal are represented as >dd...d.

l.4.1 Listing Diagnostics

Source constructs are checked for syntax and semantic errors as they
are scanned. Errors may cause interruption in scanning. In this
case, text is ignored until a recovery point is found and a resume
message is printed. Recovery points are chosen to minimize the amount
of wunanalyzed text without producing irrelevant error messages. In
any case, the constructs at fault are undermarked and error messages
listed when the source line is printed. The error message includes
either E's or W's indicating error or warning. For example:

004030 02 STOCK PIC 9(16)PPP COMPUTATIONAL.

$
%%%*])PICTURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E

Indicates a semantic number size error but
005040 02 PART PIC X(4BX(5) SYNC.
$ $
*kkx*x])SYNTAX *E*E*E*E*EXE*E*E*EXEYE*E*E*E*E*E*EX¥E*E*E
*k*k*k* 2)SCAN RESUME *WHAWHAW AW AW AW A WAWAWAW AW AW R WA W AW AW *W

indicates a syntax error at the first undermark and a recover at the
second undermark.

RS/COBOL User's Guide - 8 - June, 1983, (ver. 1.6)

The number preceding the error message 1is the undermark number,
counting from left to right. More than one message may refer to the
same undermark.

Global errors such as undefined paragraph names and illegal control
transfers are listed with the program summary at the end of the source
listing.

1.4.2 Diagnostic Messages

ACCESS CLASH
Nonsequential access given for sequential file.

BLANK WHEN ZERO
BLANK WHEN ZERO clause given for nonnumeric or group item.

CLASS
The referenced identifier is not valid in a class condition.
COPY
COPY statement failed because of permanent error associated
with the undermarked file-name.
CORRESPONDING
The CORRESPONDING phrase cannot be used with the referenced
identifier.

DATA OVERFLOW
The data area (working-storage and literals) is larger than

65535 bytes in length.

DATA TYPE
Context does not allow data type of the referenced

identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

DUPLICATE
Warning only. Multiple USE procedure declared for same
function or file.

RS/COBOL User's Guide - 9 - June, 1983, (ver. 1.6)

FILE DECL ERROR
The referenced file-name 1is SELECTed and has an invalid or
missing file description (FD).

FILE NAME ERROR
The referenced file-name has an invalid external file name

declaration.

FILE NAME REQUIRED
File name not given as referenced in I/O verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item of
the category alphanumeric within a record description entry

associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size which
conflicts with the actual data record descriptions or is a
relative organization file with variable length records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is
incorrectly qualified, is defined in a record description
associated with that file-name, or is not defined as an
unsigned integer.

FILE STATUS ERROR
The referenced file-name has a status item which is
incorrectly qualified, is not defined in the WORKING-STORAGE
SECTION, or is not a two-character alphanumeric item.

FILE TYPE
Access or organization of file conflicts with undermarked

statement.

FILLER LEVEL
A non-elementary FILLER item is declared.

GROUP CLASH
USAGE or VALUE clause of group member conflicts with same

clause for group.

GROUP VALUE CLASH
Warning Only. An item subordinate to a group with the VALUE
IS clause 1is described with the SYNCHRONIZED, JUSTIFIED, or
USAGE (other than USAGE IS DISPLAY) clause.

IDENTIFIER
Identifier reference 1is incorrectly constructed or the

identifier has an invalid or double definition.

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph or
violates the rules of segmentation.

RS/COBOL User's Guide - 10 - June, 1983, (ver. 1.6)

ILLEGAL PERFORM
A PERFORM statement reference undefined or incorrectly
qualified paragraph or the reference violates the rules of

segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REQUIRED
Relative key not declared for random access relative file or
record key not declared for indexed file.

LABEL
Presence or absence of 1label record conflicts with device
standards.

LEVEL
Level-number given is invalid either intrinsically or
because of position within a group.

LINKAGE

An identifier 1in the USING clause of the PROCEDURE title is
not a linkage item or a statement references a linkage item
not subordinate to an identifier in the USING clause of the

PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure-name.

MUST BE SECTION
Context requires procedure-name to be section.

NESTING
Illegal nesting of condition that is not an IF condition.

NOT IN REDEFINE
VALUE IS clause given in REDEFINES item.

RS/COBOL User's Guide - 11 - June, 1983, (ver. 1.6)

OCCURS
OCCURS clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced object of a DEPENDING phrase has not been

defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE~BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect for

the same item.

PICTURE-USAGE CLASH
USAGE clause or implied usage conflicts with usage implied

by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not in

the current segment.

PROGRAM OVERFLOW
The instruction area is larger than 32767 bytes in length.

RECORD KEY
Record key declared for other than an indexed organization
file or a START statement KEY phrase references a data item
not aligned on the declared key's leftmost byte.

RECORD REQUIRED
Context requires record name.

REDEFINES
REDEFINES given within an OCCURS or not redefining the last

allocated item.

REDEFINES ERROR
The referenced data-name redefines an item which does not
have the same number of character positions and is not level
o1.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY
Relative key declared for other than a relative organization

file or a START statement KEY phrase references a data item
other than the declared key.

RS/COBOL User's Guide -12 - June, 1983, (ver. 1.6)

RESERVED WORD CONFLICT
A RS/COBOL reserved word or symbol is given where a user
word 1is required. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an implemented
RS/COBOL reserved word.

SCAN RESUME
Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH
A VALUE IS clause appears in the FILE or LINKAGE section.

SEGMENT
Warning only. Segment number given in an independent
segment is not the same as the current segment or the number
of a new independent segment. The current segment number is
used.
SEPARATOR
Warning only. Redundant punctuation or a separator is not
followed by the required space.
SIGN
SIGN clause given in conflict with usage and picture.
SIZE
Warning only. Size of data referenced not correct for
context.
SIZE ERROR
Declared size of record conflicts with present reference.
SUBSCRIPT
Incorrect number of subscripts or indices for a reference.
SYNC
Synchronized clause given for a group item
SYNTAX
Incorrect character or reserved word given for context.
UNDEFINED

File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not defined
within the DECLARATIVES.

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly

qualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

RS/COBOL User's Guide - 13 - June, 1983, (ver. 1.6)

USING COUNT
Warning only. The item count in the USING list of a CALL
statement is different from that of the first reference to

the same program name.

VALUE ERROR
Value given in VALUE IS required truncation of nonzero

digits.
VALUE

VALUE IS clause given in conflict with other declared
attributes.

VARIABLE RECORD
Warning only. The INTO phrase is not allowed with variable

size records.

RS/COBOL User's Guide - 14 - June, 1983, (ver. 1.6)

8

CHAPTER 2

THE COBOL RUNTIME

2.1 Runtime Overview

The RS/COBOL Runtime operates on a TRS-80 Model 4 Microcomputer under
the TRSDOS Operating System.

Once invoked, the Runtime loads and executes the compiled object
program, automatically loading any required segments. Concurrently,
it allocates memory for file buffers, and CALLed RS/COBOL and Assembly
Language subprograms. Upon completion appropriate messages are
displayed and control is returned to TRSDOS.

2.2 Device Assignments

All communication between Runtime and the User is through the system
console. During operation the Runtime will require one or more of the

following devices:

Console (*DO) Runtime command input, Interactive Debug
command input, and Runtime messages.

Console (*D0O) ACCEPT and DISPLAY, and Interactive Debug
display.

Printer (*PR) PRINT output, if required
NOTE: For direct printer output, the device
name "PRINTER" must be specified in
the SELECT statement; i.e.,

SELECT filename, ASSIGN to PRINT, "PRINTER".

RS/COBOL User's Guide - 15 - June, 1983, (ver. 1.6)

2.3 Executing the Compiled Program

To execute a compiled RS/COBOL object program, issue the following
command to TRSDOS:

RUNCOBOL filespec (options) comment

where:

filespec
is the specification of the compiled RS/COBOL object file to
be executed of the form:

filename.ext.password:d

'filename' is required.
'd:' is an optional drive specification. When omitted the
system does an automatic search, starting with drive O.
'/ext' is an optional extension. When omitted the default
'/COB' is used.
'.password' is an optional password. Note: If the file was
created with a nonblank password, '.password' becomes a
required field.
':d' is an optional drive specification. When ommitted, the
system does a search beginning with drive O.

options

allows the user to specify Runtime options. Each option
must be specified as shown below, separated by spaces. The
left and right parenthesis are required if any comments are

present.

When no options are specified, the Runtime will execute the
User's program without Interactive Debug, with all switches
set to 0, using all of available memory.

2.3.1 Runtime Options

A=N
'A=N' indicates the printer attached does not have automatic
line feed after carriage return capability. RS/COBOL will
terminate each line with both a carriage return and a line
feed.

D

'D' invokes the RS/COBOL Interactive Debug package. See
RS /COBOL Interactive Debug chapter for operating

instructions.

RS/COBOL User's Guide - 16 - June, 1983, (ver. 1.6)

The default is not to invoke Interactive Debug.

S=nn..n
'S' sets (or resets) the value of SWITCHES in the RS/COBOL
program.
Each 'n' is a switch value, O for off, 1 for on, numbered 1
to 8, left to right. Trailing zeroes need not be specified.
The default is to set all switches off (0).

T=hhhh

'T' sets the top of available memory to a value different
from the highest available address. This is used to protect
assembly language user subroutines, all of which must be
created to load above the hexadecimal address 'hhhh'.

The default is to use all available memory.

2.3.2 Runtime Messages

Messages which report the Runtime's status, or its ability to execute
the RS/COBOL program, are reported on the system console as they are
detected.

TRS-80 Model 4 COBOL Runtime (RM/COBOL version VV.RR.PP) Copyright
1983 By Tandy Corporation. Licensed from Ryan-McFarland Corporation.

Indicates that the Runtime has been loaded and has Dbegun to
execute the specified program. 'version VV.RR.PP' identifies the
version (V) and revision (R) and patch (P) level of the Runtime.

COBOL STOP RUN AT xxyyyy IN nnnnnn
This is the normal termination message of a program.

'xxyyyy' identifies the overlay (xx) and statement address (yyyy)
where the program terminated. 'nnnnnn' are the first six
characters of the PROGRAM-ID.

If Debug was invoked on the command line, an 'S' Debug command
may be used to cause Debug to exit to the operating system.

RS/COBOL User's Guide - 17 - June, 1983, (ver. 1.6)

COBOL STOP literal AT xxyyyy IN nnnnnn CONTINUE (Y/N)?

This message indicates that a STOP 'literal' statement has been
encountered. 'xxyyyy' identifies the overlay (xx) and statement
address (yyyy) where the program terminated. ‘'nnnnnn' are the
first six characters of the PROGRAM-ID.

Responding with a '¥Y' will be the equivalent of a "pause"
statement, returning control to the next RS/COBOL statement.

An 'N' response will cause all program files to be closed and
control will be returned to the operating system.

2.3.3 Program Termination

When the RS/COBOL program terminates, an appropriate message will be
displayed on the user console.

In addition, the HL register pair will contain a return code set to
indicate the result of the program's execution. Return codes and
their definitions are:

0 normal termination

1-127 User defined (STOP RUN)

-1 IO error

-2 cancelled (BREAK)

-3 runtime error

-4 program load fail

-5 Runtime command line usage error

2.3.4 Examples

RUNCOBOL PAYROLL (S=1011)

locates, loads, and executes the compiled RS/COBOL program
PAYROLL/COB; and sets the value of SWITCHES 1, 3, and 4 '‘'on', all
others 'off'.

RUNCOBOL MORTGAGE/TST:2 (D)

loads the compiled RS/COBOL program MORTGAGE/TST from drive 2
along with the Interactive Debug package. Control is passed

directly to Debug.

RS/COBOL User's Guide - 18 - June, 1983, (ver. 1.6)

2.4 Runtime Diagnostics

Diagnostic messages are displayed on the console if an internal error
occurs, or if an I/0 error occurs that was not, or could not, be
processed by an appropriate USE procedure.

If Debug was invoked, Debug will be entered to allow examination of
program data values; otherwise, control will return to TRSDOS

RUNTIME ERROR, NO: nnnnn; (filename) - message

Indicates an internal error condition has occurred which prevents
continued execution. The value of 'nnnn' identifies the
condition which caused the error.

If the error was associated with a file, the filename is printed.
The message associated with the error is also output.

COBOL error AT xxyyyy IN nnnnnn

Indicates an internal error condition has occurred, where
‘error' identifies the error condition. 'xxyyyy' identifies
the overlay (xx) and statement address (yyyy) where the
program terminated. ‘'nnnnnn' are the first six characters

of the PROGRAM-ID.

COBOL filename IO ERROR = cc AT xxyyyy IN nnnnnn

Identifies that an abnormal I/0 condition, 'cc' has caused

the program to be aborted. 'zxxyyyy' identifies the overlay
(xx) and statement address (yyyy) where the program
terminated. 'nnnnnn' are the first 6 characters of the
PROGRAM-ID.

The I/0 =rror 'cc' has a different meaning depending on
whether the file's organization is sequential, relative or
indexed.

Sequential Files:

10 AT END.
The sequential READ statement was unsuccessfully
executed as a result of an attempt to read a record when
no next logical record exists in the file.

RS/COBOL User's Guide - 19 - June, 1983, (ver. 1.6)

30

34

920

91

92

93

94

95

PERMANENT ERROR.
The input-output statement was unsuccessfully executed
as the result of an input-output error, such as data

check parity error, or transmission error. May also
indicate attempted execution of an instruction not
implemented in the Runtime (REWRITE to a variable length

record (VLR) file; CLOSE REEL).

PERMANENT ERROR BOUNDARY VIOLATION.

The input-output statement was unsuccessfully executed
as the result of a boundary violation for a sequential
file.

INVALID OPERATION.

An attempt has been made to execute a READ, WRITE, or
REWRITE statement that conflicts with the current open
mode or a REWRITE statement was not preceded by a
successful READ statement.

FILE NOT OPENED.
An attempt has been made to execute a DELETE, READ,

START, UNLOCK, WRITE, REWRITE or CLOSE statement on a
file which is not currently open.

FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on

a file which is currently open.

FILE NOT AVAILABLE. ,
An attempt has been made to execute an OPEN statement

for a file closed with LOCK.

INVALID OPEN.

An attempt has been made to execute an OPEN statement
for a file with no external correspondence or a file
having inconsistent parameters.

INVALID DEVICE.

An attempt has been made to execute a CLOSE REEL
statement, or to execute an OPEN statement for a file
which 1is assigned to a device in conflict with the
externally assigned device. Valid combinations are:

Program Assignment External Assignment
RANDOM Disk
INPUT Disk
OUTPUT Disk
PRINT Disk, line printer
INPUT-OUTPUT Disk

RS/COBOL User's Guide - 20 - June, 1983, (ver. 1.6)

96 UNDEFINED CURRENT RECORD POINTER STATUS.
An attempt has been made to execute a READ statement
after the occurrence of an unsuccessful READ statement
without an intervening successful CLOSE and OPEN.

97 INVALID RECORD LENGTH.

An attempt has been made to execute a REWRITE statement
when the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute
a WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

RS/COBOL User's Guide - 21 - June, 1983, (ver. 1.6)

Relative and Indexed Files:

02

10

21

22

23

24

30

90

91

92

SUCCESSFUL OPERATION BUT KEY HAS DUPLICATE.

For a read operation, it indicates that the next record
associated with the current key of reference has the
same key value. For a write or rewrite operation, it
indicates that the record just written created a
duplicate key value for at least one alternate key for
which duplicates are allowed.

AT END.

The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

SEQUENCE ERROR FOR A SEQUENTIALLY ACCESSED INDEXED FILE.
The ascending sequence requirement of successive record
key values has been violated or the record key value has
been changed by the COBOL program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file.

DUPLICATE KEY VALUE.

An attempt has been made to WRITE a record that would
create a duplicate key on a file that does not allow
duplicates.

NO RECORD FOUND.
An attempt has Dbeen made to access a record, identified
by a key, and that record does not exist in the file.

BOUNDARY VIOLATION.
An attempt has been made to WRITE beyond the
externally-defined boundaries of a file.

PERMANENT ERROR.

The input-output statement was unsuccessfully executed
as the result of an input-output error, such as data
check, parity error, or transmission error.

INVALID OPERATION.
An attempt has been made to execute a DELETE, READ,
REWRITE, START, or WRITE statement which conflicts with

the current open mode of the file or a sequential access
DELETE or REWRITE statement not preceded by a successful

read statement.

FILE NOT OPENED.

An attempt has been made to execute a CLOSE, DELETE,
READ, REWRITE, START, UNLOCK, or WRITE statement on a
file which is not in an open mode.

FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on

a file that is currently open.

RS/COBOL User's Guide - 22 - June, 1983, (ver. 1.6)

93

94

95

926

97

98

FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement on
a file closed with LOCK.

INVALID OPEN.

An attempt has been made to execute an OPEN statement
for a file with no external correspondence or a file
having inconsistent parameters.

INVALID DEVICE.

An attempt has been made to execute an OPEN statement on
a file whose device description conflicts with the
externally assigned device. The device must be RANDOM
and the external correspondence must be a disk.

UNDEFINED CURRENT RECORD POINTER.

An attempt has been made to execute a Format 1 READ
statement when the current record pointer has an
undefined state. This can occur only as the result of a
preceding unsuccessful READ or START statement.

INVALID RECORD LENGTH.

An attempt has been made to execute a REWRITE statement
and the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute
a WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size.

INVALID INDEX.

An input-output statement on an indexed organization
file was unsuccessful as a result of invalid data in the
index. This can result if the externally assigned file
is not an index organization file or if an undetected
input-output error has occurred.

RS/COBOL User's Guide - 23 - June, 1983, (ver. 1.6)

2.5 File System Considerations

Three types of files are supported by RS/COBOL: sequential, relative

(random), and indexed sequential. These files exist on the disk as
standard TRSDOS disk files, consisting of either fixed length records
(FLR), or internally formated variable length records (VLRs). While
the user will not typically need this information to execute RS/COBOL
programs, he/she is referred to the Technical Information Section of
the TRS-80 Model 1V Disk Operating System Reference Manual if further

information is desired.

Files are specified 1in the program's SELECT statement 1in a manner
consistent with the TRSDOS filespec, of the form:

filename/ext.password:d

where:
'filename' is required.
'/ext' is an optional name-extension.

' .password' is an optional password. Note: If the file was
created with a nonblank password, '.password' becomes a
required field.

':d' is an optional drive specification. When omitted the
system does an automatic search, starting with drive O.

2.5.1 RS/COBOL Sequential Files

RS/COBOL sequential files consist of a serially accessible set of
'logical' records. These 'logical' records may exist on the disk as
either variable length (VLR) or fixed length (FLR) records.

RS/COBOL sequential files that are ‘'created' by an RS/COBOL program
(i.e., do not already exist), are created as variable length (VLR)
records. Each 'logical' record within the file can have a maximum

length of 255 bytes.

RS/COBOL sequential files that were 'created' by other than an
RS/COBOL program can have either fixed length (FLR) or variable length
(VLR) records. In this case, the RS/COBOL Runtime will process the
records as presented. Each 'logical' record can have a maximum length

of 255 bytes (VLR) or 254 bytes (FLR).

NOTE: The REWRITE statement is not valid for variable length records
(VLR's), and will generate an appropriate error message if executed.

RS/COBOL User's Guide - 24 - June, 1983, (ver. 1.6)

2.5.2 RM/COBOL Relative Files

RS/COBOL relative files are addressable randomly by ‘'logical’ record
number. These files exist on the disk as fixed length (FLR) records.

RS/COBOL relative file 'logical' records are internally formatted, and
can be created and/or accessed only by RS/COBOL programs. Each
'logical' record can have a maximum length of 254 bytes.

RS/COBOL relative files are dynamically allocated or extended as
required by TRSDOS. If the user desires to preallocate the file,
allocate it by using the TRSDOS CREATE program, with options shown

below:
(fixed length records)

it

LRL 254 (record length = 254 bytes)

(record length +2) * (max # records)

il

NRECS

2.5.3 RS/COBOL Indexed Files

RS/COBOL indexed files are created and maintained by the RS /COBOL
Runtime; implemented on the disk using TRSDOS fixed length (FLR)

records.

RS/COBOL indexed files are internally formatted, and can be created
and/or accessed only by RS/COBOL programs. Each 'logical' record can
have a maximum length of 2048 bytes.

Indexed files contain an index structure for each key specified
interspersed with the data records. The use of ALTERNATE KEYS can
cause a geometric increase in the time required to create the file;
however, access time will be relatively constant throughout the file.

RS/COBOL User's Guide - 25 - June, 1983, (ver. 1.6)

RS/COBOL indexed files are dynamically allocated or extended as
required by TRSDOS. If the user desires to preallocate the file,
allocate it using the TRSDOS CREATE program with options shown below:

Variables:

R = maximum number of records
S = maximum size of records (in bytes)
D = number of keys that allow duplicates
Kl = size of first key
K2 = size of second key
Kn = size of nth key
Subtotals - A = Int ((Int((S+33)/32*R/8)+1)
B = Int ((R*D/8)+1)
Tl = Int ((R*2/Int(252/(K1+8)))+1)
Tn = Int ((R*2/Int(252/(Kn+8)))+1)
NOTE:

Best case usage: No. of recs = A+(B/3)+((T1+T2+...+Tn)/2)
Worst case usage :No. of recs = A+B+T1+T2+...+Tn

Int (A) 1is the integer part of A before the decimal point (eg: Int |

(3.1416)=3.
Note: This calculation provides an approximation for

preallocating the file. TRSDOS will automatically create and/or
extend the file as necessary to the physical limits of the disk.

RS/COBOL User's Guide - 26 - June, 1983, (ver. 1.6)

2.5.4 RS/COBOL Label Processing

The RS/COBOL language allows the specification of the existence, and
processing, of label records on file type devices.

TRSDOS provides automatic maintenance and wvalidation of file
specifications by name and file type. No additional label processing
is performed unique to RS/COBOL programs or files.

References to label processing in the file description entry (FD),
OPEN statement, and CLOSE statement, are checked for correct syntax by
the compiler. They are largely ignored by the Runtime except that
appropriate error codes will be returned, and any applicable USE
procedures will be executed.

RS/COBOL User's Guide - 27 - June, 1983, (ver. 1.6)

2.6 Runtime Memory Usage

The TRSDOS Operating System occupies lower memory from location OOOOH
to 25FFH. The RS/COBOL Runtime is loaded starting at 2600H. The
remaining memory is allocated as follows:

The main RS/COBOL object program is loaded immediately behind the
RS/COBOL Runtime. Space for RS/COBOL overlays (SECTIONS greater
than 50) are included in this area.

Additional RS/COBOL programs are loaded behind this main program
as they are CALLed (See the CALL statement below).

File buffers are dynamically allocated in the working storage
from high memory downward, when OPENed, and deallocated (space
recovered for use by other files) when CLOSed.

Assembly Language programs are loaded in high memory at the
address they were assigned at 'DUMP' times (see Runtime ‘T=hhhh'
option).

RS/COBOL User's Guide - 28 - June, 1983, (ver. 1.6)

CHAPTER 3
INTERACTIVE DEBUG

3.1 Debug Overview

RS/COBOL Interactive Debug is invoked when the user specifies the 'D'
option on the RUNCOBOL statement. Debug is then given control and
supervises the execution of the user's program.

Interactive Debug is loaded directly behind RS/COBOL Runtime,
requiring approximately 1200 bytes.

3.2 User Interaction and Display

All Debug commands, and all resultant displays, are through the system
console.

Debug will request command input by a prompt of the form

nnnnnn Xxyyyy

where 'nnnnnn' are the first 6 characters of PROGRAM-ID, xx' is the
overlay number, and 'yyyy' 1is the hexadecimal 1location within the
specified overlay that will be executed next.

The values of 'xx' and 'yyyy' are taken directly from the Debug column
in the source listing for program ‘'nnnnnn'.

3.3 Debug Commands

All commands are specified by a single character, optionally followed
by one or more arguments. Optional fields are shown surrounded by
brackets; the brackets are never entered. All numeric arguments are

in hexadecimal unless otherwise noted.

Invalid commands will be rejected with 'ERROR' displayed; corrected
input will be requested with a reprompt.

Al xx]yyyy[,nnnnnn] Address stop.

Executes object instructions until overlay number 'xx' and
location 'yyyy' 1in program nnnnnn is to be executed. Debug will
regain control immediately prior to the execution of the
specified COBOL sentence, and request further command input.

RS/COBOL User's Guide - 29 - June, 1983, (ver. 1.6)

If 'xx' 1is specified, 'yyyy' must Dbe fully four hexadecimal
digits; 1if 'xx' is not specified, then leading zeros are not
required for 'yyyy'. If 'nnnnnn' is omitted, it is assumed to be
the first six characters of the program-id of the currently
executing program.

S[n] Single step sentence.

Execute 'n' RS/COBOL sentences and return to the debug monitor.

The decimal argument n' specifies the number of RS/COBOL
sentences to be executed before returning the Debug.

Dxxxx,yyyylL,tttt] Dump by type.

Display the RS/COBOL data item starting at hexadecimal location
'xxxx' of decimal length 'yyyy' and type 'tttt'. The values for
"xxxx', 'yyyy's and 'tttt' are directly from the first three
columns of the allocation map. 'tttt' may be one of the
following:

NSU NPS

NSS ABS

NCU ANS

NCS GRP

NBS ANSE

NSE HEX (hexadecimal)

Dump Display has the format:
xxXxx tttt dddd....
where dddd = data in the specified format
Note: Only items in the currently executing program can be
displayed. This does not include linkage items.
Q Quit Execution.
Terminate Debug and force an immediate STOP RUN. Enter 'S' to
return to TRSDOS.
E Exit

Exit the Debugger. Continue normal execution as if the debugger
had not been invoked on the command line.

RS/COBOL User's Guide - 30 - June, 1983, (ver. 1.6)

CHAPTER 4

SYSTEM CONSIDERATIONS

4.1 The ACCEPT and DISPLAY Statements

The ACCEPT and DISPLAY statements support the transfer of data between
the console and the program's data area. These statements allow the
specification of general phrases which may not be supported on every
CRT.

Phrases which are not supported will compile correctly, but will be
ignored at runtime, causing no operation to take place. The phrases
which are not supported under the Tandy Model IV are:

ACCEPT....HIGH, LOW, BLINK.

DISPLAY....HIGH, LOW, BLINK.

The ON EXCEPTION phrase of the ACCEPT statement is executed when an
invalid character 1is entered. Invalid characters include the valid
control characters (CNTRL/n) below O020H, and non-ASCII characters

above and including O80OH.

When an invalid character is entered, its ASCII equivalent 1is placed
in the specified data-name and the ON EXCEPTION phrase 1is executed.
To determine which control character was entered, define the data-name
as USAGE COMPUTATIONAL-1l and compare for its ASCII value.

If an ON-EXCEPTION phrase 1is given and no exception occurs, the
character that terminated the accept (or binary O if no terminator)
will be placed in the data-name.

Certain keys affect the operation of the ACCEPT statement, including:

<BACK-ARROW> Erases the current character and moves the
cursor back one position.

<SHIFT-BACKARROW> Backspace to the beginning of the field,
erasing all characters in the field.

RS/COBOL User's Guide - 31 - June, 1983, (ver. 1.6)

4.2 The CALL Statement

When 'CALLed' the first time, RS/COBOL and assembly language programs
are loaded by the Runtime and entered at their initial location.
These ‘'called' programs remain in memory as long as the 'calling'
program has not EXITed and been replaced by another program.
Therefore, subsequent CALLs from the 'calling' program will enter the
‘called' program directly, without requiring the 'called' program to

be reloaded.

Once the ‘'calling' program has EXITed and has been replaced by another
program, all related 'called' programs are discarded and will be
reloaded if subsequently CALLed by any program, including the previous
‘calling' program. Regardless of the sequence of 'called' and
'calling' programs, all related files not explicitly closed are forced
closed by the interface upon EXIT from a given 'called' program.

COBOL programs that are to be CALLed must have been previously
compiled. The default filename-extension for a program name in a CALL
statement is '/COB'. A compiled COBOL program will have the required
extension. If the extension used is not '/COB' , then it must be
specified in the CALL statement.

Assembly language programs that are to Dbe CALLed must be in TRSDOS
LOAD command format as created by DUMP, with a filename extension
other than '/COB'. Assembly language programs must reside in high
memory, and the 'T=nnnn' option must be specified on the Runtime
command line to protect the memory required by the sub-program. The !
user is responsible for ensuring that the assembler programs do not
interfere with each other.

Assembly language sub-programs are loaded and reused while the
‘calling' program resides 1in memory. If the RS/COBOL 'calling'
program 1is reloaded in memory, then the assembly sub-program will
again be reloaded when it is called.

At entry time to assembly language routine register IX points to the
parameter list defined by the USING clause of the CALL statement. The
first word on the list contains the number of bytes in the 1list.
Subsequent words are addresses of the USING arguments: e.g., 1if the
length word specifies 6 bytes, there are 2 addresses following the

length word. For example:

RS/COBOL User's Guide - 32 - June, 1983, (ver. 1.6)

(IX) => DW

The format of

Argument List Length (n * 2) + 2
USING Argument 1
USING Argument 2

USING Argument n

each argument depends on its dataname PICTURE

definition; see the RS/COBOL Language Manual, 'the PICTURE Clause'.

At exit time from an assembler routine, register A may be set non-zero

to request a
Termination).

STOP RUN. (See the RS/COBOL Runtime, Program

RS/COBOL User's Guide - 33 - June, 1983, (ver. 1.6)

4.3 The COPY Statement

The COPY statement provides the facility to copy (include) RS/COBOL
source text from a user-specified file into the source program. The
complete file is copied into the program, without change, at the
location of the COPY statement.

The file to be copied is identified in the RS/COBOL program by the
statement

COPY filename
or
COPY "“filename/ext.password:d.

where:

'filename' is required.

'/ext' is an optional name-extension. When omitted the
default '/CBL' is used.

'.password' is an optional password. Note: If the file was
created with a nonblank password, '.password' becomes a
required field.

':d' is an optional drive specification. When omitted the
system does an automatic search, starting with drive O.

A filename consisting only of letters and numbers (first character
must be letter) can be written without surrounding quotes. All other
forms must be surrounded by quotes.

Examples:

IDENTIFICATION DIVISION.

CoPY STDID.
ENVIRONMENT DIVISION.

COPY "STDENVIR/TST".
DATA DIVISION.

CopPY "STDDATA/CBL".

RS/COBOL User's Guide - 34 - June, 1983, (ver. 1.6)

4.4 The WRITE...ADVANCING ZERO...Statement

The sequential WRITE statement allows control of the vertical
positioning of each 1line on the printed page with the ADVANCING
" phrase.

The ... ADVANCING ZERO LINE(s) ... phrase allows overprinting on
those print devices which support this feature. In all cases, the
phrase will compile correctly, but may operate as though ...ADVANCING
1 LINE... was specified.

Standard Radio Shack Line Printers automatically advance after each
line is printed. Therefore, the ...ADVANCING ZERO LINES... phrase
will execute as ...ADVANCING 1 LINE. The Compiler and Runtime default

to standard Radio Shack Line Printer operation.
4.5 The STOP RUN numeric Statement

The RS/COBOL STOP RUN statement has an optional numeric operand which
will be returned to the Operating System in the HL register as the
Return Code. This operand, if present, should be in the range 1-127.
Return codes of 0 and 128-255 are reserved for Runtime usage.

When no value is specified, a value of 0 (normal termination) will be
returned to the Operating System.

RS/COBOL User's Guide - 35 - June, 1983, (ver. 1.6)

CHAPTER 5
INSTALLATION PROCEDURES

5.1 Installing RS/COBOL

Installation of RS/COBOL requires only that the object modules be
copied from the Software Distribution Media to the appropriate user
diskette. NOTE: 'mn' indicates the current release level, i.e.,

release 01.06 will be '16°'.

The modules required to compile RS/COBOL programs are:
RSCOBOL
RSCBL2nn/OBJ

RSCBL3nn/OBJ
RSCBL4nn/OBJ

The modules required to execute compiled RS/COBOL programs are:

RUNCOBOL /CMD
RSCBLDnn/OBJ

As with all Software Distribution Media, the user should save it in a
secure location in case re-creation is required.

RS/COBOL User's Guide - 36 - June, 1983, (ver. 1.6)

RE/ACOROL

SOURCE

L INE

PR o

)

FILE:

DEBUGE

CRMCOROL

APPENDIX A
SAMPLE SESSION

Vi, @&, A0 for TRS-B@ Model 4 1@/ 24 /B3 19eER 3R

CALCEXMPL/CRL OFTION LIST: F

PG

IDERNTIFICATION DIVISION.
FROGRAM-TD.

CaLCULATOR.
ENVTRONMMENT DIVIGTON.
COMF T EUR 2T
SOURCE-C
OBJECT-
DATH DIVIGT
WO T NG ahl SECTION.
RS FIOTURE
FLCTY
. FLOTW
TT O OWALT-OHAR FLCTURE
G RE gLt

Y LTING (),
35 05V (D

FILLER FPLGTURE

VaLUE " OHODEE YOUR |
@l GPERATOR P URE
@l 1

@ K37

BLE) .

PICTURE X(12)
15 = v,

PICTURE ~(9)%.,9(9)

PIC X(4) VALLUE CES

L

RESUL

@l
PLOTURE S
CRTTOMEWLINE TO CONTINUE (D TO

Wl L
@il OPERAND- -

@ FIHLLER LS

PICTURE
ISR] w
@1

VLA

RS/COBOL User's Guide - 37 - June, 1983,

(S V(R WALUE

TION by oy dy /)

TERD.

i

T

(ver.

Fage i

H
v

1.6)

RESCORGL
SOURCE FILE:

Lo DE

DERUG

=R
FAGRG
FAGGEH

L
=04 E
=R
et
=R O
Q@5 4
ROEC
59 =@0é4
&R EBEE
Q@S
RBET

FRATE
&S BT
&é A8

4
*OREE

0094
- A0T8
71 ORAZ
> B0AZ
+O0AL
»00AG

{RMSCOROL

Model 4 1@/ 2a/8% 19835830 Page

OPTION LIST: P

Vil Bs a0 for TRE-EE@

CaLCKMPL S CRL

P

DIVIEION,
CTION 1.

(=1
(P
Vs, "
Ualk. "/
Ual. "

ML TIRPLTCATIO
DINVI-ST0N.
ERD -~ RUN .

DISPLAY-F
MOVE

AL T-EDITED.,
AGE .,

JERFLOW-F TELD.,

WoTT-ENTRY .,

GIEPLAY WALT-MEGSAGE.

ACCEPT WAIT-CHAR, FOSITION @, PROMPT,
STT-CHAR EQUAL. "Q" GO TO END-RUN,
GO TO RE-TRY.

GET-0OPERANDS .
DISPLAY OPE
ACCERT OPERAND=1,

FROMPT,
OPERAND

ECHO

LIME 4.
POSTTION

RANMD 1 ~MESESGE,
L INE

Ay 13, 8IZE 1@,

MOVE

. LIRNE 4, POSBITION 13,
. OPERAND~Z2-MESSAGE .
COOPERAND-Z y LIME Dy
FROMPT, CONVERT.

MOVE OPERAND-Z TO RESU.T-EDITED.
DIGPLAY RESULT-EDITED, LINE 3, POBITION 13.
ERD-RUN.,
EXIT
BTOP-RUN.

STOR

SI7E 1@,

POBITION 13,

FROGRAM.

RN

W ow owowowom oW ouowomowoa o

for THES-HO 30 Page

LINE DEBUG PG/LN A...B.ueewnnaa L T Woam W nw o an ek w s

75 / EJECT
TED1RDAA OVERLAY-ADDITION SECTION 51.

7701 BOAN ADDITION,

TR0 100AA PERFORM GETwﬁPER%NQSu

THE01BBAC OPERAND= GIVING RESULT

VOVERFLOW® T OVERFLOW-FTELD.

T
ECT LN

OPERGNDE .,

WBCT DPERAND~E FROM

ON BIZE ERROR MOVE
GO TO DISPLAY-RESUL

OVERLAY=MULTIFLICATION SEC

MULTIPLICATION.,
PERFORM GET-0PERANDS,
MUL.TIPLY BY

7 i

93 AEOBEA 5O TO DISFLAY~F

P4 Q4 DDA OVERLAY-DIVISION SE

G5 > DADDAA :

P& DLBDAA ERFORM GET- OPERANDS ,

97 D4OBAL DIVIDE OPERAND-1 BY OPERAND-Z

eIz ON SIZE ERROR MOVE " OVERF

595 Q4ROEC GO OTO DISPLAY-RESULT.

100250044 OVERLAY=-DISPLAY-GREETING SECTION 98.

101250066 DIGPLAY-GREETING,

102> B50R6A DISPLAY GREETING.

1O3 05 00AE GO TO WAIT-ENTRY.

104 END PROGRAM,

GIVING F

L™ 0 GWER

GIVING
LOW® T

RS/ COROL {(RM/COROL VO1.06.8C) for TRE-80 Model 4
OPTION LIST: P

SOURCE FILE: CALCXMPL/CBEL

ADDRESGS ®IZE DERBUG ORDER TYPE

FAO04 19 NE& @ MUMERITC SIGNED
@18 19 NBSS @a NUMERIC SIGNED
*AAzC 19 NBE @ NUMERIC SIGNED
AL 1 ANS @& ALPHANUMERIC
042 18 GRP @ GROUP

AL 4 37 GRP @ GROUP

DA 2OANS @ ALPHANUMERTC
GROUP

NUMERIC EDITED
AL PHANUMERIC

»R@a7o 44 GRP
»@08a 2@ NBE
e retrd] 8 ANG

o

GROUP

=

=AgAg 36 GRP
HRACC 1& GRP @ GROUP

=AGDE 12 GRP & GROUP

READ ONLY BYTE SIIZIE = FALCE

READ/WRITE BYTE BIIE = F@AAEC

OVERLAY SEGMENT BYTE SIZE = »@002E

TOTal. BYTE S8IZE = HAEDC
@ ERRORS

@ WARNINGS

1@/ 24/83 19:35:1 380 Page

MNAME

RESULT
OFERAND-1
OFERAND-Z
WALT-CHAR
GREETING

ORERATION~MESSAGE

OPERATOR

OPERAND- 1 ~MESEAGE

OPERAMD -2 MESSAGE

TRS-80" MODEL 4

RSCOBOL
CEDIT
USER’S GUIDE

Using CEDIT to Create
and Edit COBOL Source

Files.

™

Radio Shaek R

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TRS-80 °

The COBOL Editor

(CEDIT)

Radie fhaek

MODEL 4 COBOL TRS-80 ° EDITOR

The COBOL EDITOR (CEDIT)
The COBOL Editor allows you to enter and edit a COBOL
language source program. You can save this program on disk
as a source file to be compiled into COBOL object code.

This section describes the use of the Editor itself.

LOADING THE EDITOR
This command, typed in the TRSDOS Ready mode:

CEDIT source filespec

loads the Editor and then loads the specified source
filespec into the Editor. The source filespec is
optional. For example:

CEDIT <ENTER>
causes the Editor to load and display a similar heading:

TRS-80 Model 4 Text Editor Version v.r.p.
Copyright (c) 1982, 83 Tandy Corp.

(v.r.p. is the version, release and patch numbers.)
CEDIT CALCXMPL <ENTER>

causes the Editor to load, display the above heading, then
load a source file named CALCXMPL/CBL.

If the source filespec does not contain an extension, the
Editor appends /CBL to it.

The Editor loads into all of the memory above TRSDOS. It
reserves approximately the top 33K bytes in a Model III and
the top 40K bytes in a Model 4 as an "edit buffer" for
inserting your programs. However, if you have also loaded
one of the High Memory TRSDOS utilities the edit buffer will
be smaller.

Radio Sfhaek

-1 -

MODEL 4 COBOL TRS-80 ® 4 EDITOR

USING THE EDITOR

The following pages define the three modes in which you can
use the Editor:

. the command mode
. the insert mode
. the line edit mode

THE COMMAND MODE

When you first load the Editor, it is in the command mode.
While in this mode, you can use any of the special keys
listed in Table 1 or the commands listed in Table 2.

All commands except I and E return to the command mode after
executing. To return to the command mode from I (insert
mode) or E (line edit mode), press <BREAK> or <ENTER>
respectively.

When you enter an Editor command, it creates a blank "work

line" and points to the line just beneath it. To redisplay
the screen after an error message and delete the work line,
use the N command.

Sample Use

For an example of using the command mode, use the I command
to insert this program:

*THIS IS THE FIRST LINE <ENTER>
*THIS IS THE SECOND <ENTER>
*AND HERE IS ANOTHER <ENTER>
*AND ANOTHER <ENTER>

<right arrow> END <ENTER>

Press <BREAK> to return to the command mode.

You can move the cursor and rearrange the lines of the
program. For example type the following Editor command:

Radio Sfhaek

T

the cursor moves to the top of the text. Type B to move it
to the bottom. Press <up arrow> and <down arrow> to move it
to specific lines.

Move the cursor to the third line and type:

1

The < appears to the left of the line. This specifies the
beginning of a block. Move the cursor to the fourth line

and type:
2

The > appears to the left of the line. This specifies the
last line in the block. Move the cursor up to the second

line and type:
0

which is the O command. This copies the block between the
first and second line. Move the cursor to the next to last

line and type:
D

the delete command (executes without pressing <ENTER>). The
last line is now deleted.

To save this program on disk you can use the W command.
Type (it does not matter which line the cursor is positioned

at):
W TEST <ENTER>

This saves this program on disk as a file named TEST/CBL.
You can exit the Editor by typing:

Q <ENTER>
the quit command.
Q will exit the Editor without writing the text to disk. If

you forgot to save the text first, type CEDIT * <ENTER> to
re-enter the Editor. Your text will be retained.

Radie fhaek

Be sure you use the CEDIT * command immediately after you
exit the Editor. It will not work predictably after you run
a command which modifies memory. Also, be sure you type one
blank space between CEDIT and the asterisk(*).

Table 1 / CEDIT Command Mode Keys

Model 4 Model III
Keys Description Keys
<down arrow> positions the cursor <down arrow>

down one line (ignored
if the cursor is not in
the first column)

<up arrow> positions the cursor <up arrow>
up one line (ignored
if the cursor is not in
the first column)

<CTRL><A> <SHIFT>
positions the cursor to <down arrow>
the top of the screen.

<CTRL> <SHIFT>
positions the cursor to <down arrow><C>
the bottom of the screen
or to the first line after
the last line of text.

<.> displays the current <.>
line sequence number.
This number will change
as you insert and delete
lines.

#1ine<ENTER> positions the cursor to #1line<ENTER>
the specified line
sequence number and
moves that line to the
top of the screen.

Radie fhaek

MODEL 4 COBOL TRS-80 ® EDITOR

<BREAK> cancels any command <BREAK>
being executed and
returns to the command
mode.

<SHIFT> <SHIFT>
<{up arrow> cancels the current {up arrow>
command line if you
have not yet pressed
<ENTER>.

Table 2/ CEDIT Editor Commands

Description of terms:

current line
the line where the cursor is currently positioned.

del ,

(stands for delimiter) One of the following characters

which marks the beginning and ending of a string:
P48 %8s ()t , -0/ K< =>7

string
one to 37 ASCII characters on the Model 4 and one to

29 ASCII characters on the Model III.

text
the source program or text currently in RAM.

A <ENTER>
Re—-executes the last executed command. This command only
works with the Editor Commands C, F, X, L and W.

B
Moves the cursor to the bottom of the text.

C del stringl del string2 del occurrence

<ENTER>
Changes stringl to string2 for the number of
occurrences you specify. Occurrences must range from
1 to 255. The changes begin at the current line and
are made only to the first occurrence on a given line.

Radie fhaek

EDITOR

MODEL 4 COBOL TRS-80 °©

If you omit occurrence, only the first occurrence of
stringl is changed. You may specify occurrence with
an asterisk, in which case the change is made to the
first occurrence of stringl in all the remaining
lines.

For example:
C/TEXT/FILE/3 <ENTER>
changes the first 3 occurrences of TEXT to FILE.
C?TEXT?FILE?* <ENTER>
changes all occurrences of TEXT to FILE. (Change acts
on only the first occurrence within a line.)
After executing the command, the cursor positions
itself at the last change or, at the top of the file if
changes went through the whole file.

D
Deletes the current line or block of lines. To delete

a block, position the cursor at the first line in the
block and type <1>. Then position it at the last line
and type the D command. (The block may be on

several pages.) The cursor must be positioned on a
line within the file.

For example:

MOVE FIELD-B TO FIELD-A.

<1> ADD 1 TO FIELD-A.
ADD 3 TO FIELD-A.
<D> ADD 4 TO FIELD-A.

SUBTRACT 1 FROM FIELD-B.

deletes all but the following:

MOVE FIELD-B TO FIELD-A.
SUBTRACT 1 FROM FIELD-B.

You can cancel a block deletion after pressing <1> but
before typing D. To do this, press <3>.

E
Allows you to edit the current line using line edit

mode subcommands. The line will appear in reverse
video (Model 4 only). See the edit mode for a listing of
subcommands .

Radio Sfhaek

MODEL 4 COBOL TRS-80 ® EDITOR

F del string del occurrence <ENTER>
Finds the specified occurrence of string. If you
omit occurrence, finds the first occurrence of
string. If you omit string, the last string specified
is found. Occurrences must range from 1 to 255. For
example:
F/TEXT/2 <ENTER>
finds the second occurrence of TEXT.
F/TEXT/ <ENTER>
finds the next occurrence of TEXT.
F <ENTER>
finds the next occurrence of the last specified string.
F$ % <ENTER>
finds the next occurrence of five blank spaces.
The Editor will search for only one occurrence of the
string in each line.

G <ENTER>
Deletes all text from the current line to the end.

You will first be prompted with:
"Are you sure?"
Type Y <ENTER> to delete; N <ENTER> to cancel.

H <ENTER>
Prints the entire text if entered as the first command

or the specified block on the printer. To print a
block, move the cursor to the first line of the block
and type <1>. Move the cursor to the last line of the
block and type <H>. For example:

MOVE FIELD-B TO FIELD-A.

<1> ADD 1 TO FIELD-A.
ADD 3 TO FIELD-A.
<H> ADD 4 TO FIELD-A.

SUBTRACT 1 FROM FIELD-B.
prints a block of ADD instructions.

You can cancel a block printing after pressing <1>
but before typing H. To do this, press <3>.

Press <BREAK> to terminate printing. If the printer is

off-line or goes off-line during printing, some characters

may be lost.

Radio fhaek

MODEL 4 COBOL TRS-80 © EDITOR

I
Enters the insert mode for inserting lines just
before the current line. See "Insert Mode" for

more information.

J

Displays current size of text and how much memory
remains. Memory size does not include a small work
area when the buffer is full, but the text size may
reflect some of this work area.

K <ENTER>

Deletes ALL text. (Does not delete text from the

disk file, only from the edit buffer. Before deleting
your text, the Editor will ask you "Are you sure".

Type Y <ENTER> to execute the command; N <ENTER> to not
execute it.

L filespec $C <ENTER>

Loads filespec into the Editor. $C is optional.

If specified, the Editor chains the new filespec to
the end of the text currently in memory. If not
specified, the new filespec overlays the current text.

For example:

L TEST <ENTER>

loads TEST/SRC into the Editor.

L TEST $C <ENTER>

chains TEST/SRC to the end of the text currently in
memory.

The Editor will load fixed length record (FLR) files with

a record length of one. If the file is fixed length,

each line must be ended with a carriage return.

Note: When the Editor completes, the record length will
be 256.

M
Moves the specified block just ahead of the current

line. Use <1> and <2> to specify the block.
The Editor displays a line count as it moves each line.

For example:

ADD FIELD-B TO FIELD-A.
<1> MOVE FIELD-D TO SAVE-D.
MOVE FIELD-H TO SAVE-H.
MOVE FIELD-I TO SAVE-I.

Radio fhaek

-8 -

MODEL 4 COBOL TRS-80 ® EDITOR

<2> MOVE FIELD-B TO SAVE-B.
ADD 8 TO FIELD-B.
<M> ADD 1§ TO FIELD-A.

moves the block of MOVE instructions just ahead of
the last line:

ADD FIELD-B TO FIELD-A.
ADD 8 TO FIELD-B.

MOVE FIELD-D TO SAVE-D.
MOVE FIELD-H TO SAVE-H.
MOVE FIELD-I TO SAVE-I.
MOVE FIELD-B TO SAVE-B.
ADD 1§ TO FIELD-A.

You can cancel the block after specifying it but
before typing M. To do this, press <3>.

N
Updates the display. You might want to use this
after executing the J command or cancelling the G

command .

(o]
Copies the specified block just above the current
line. (Use <1> and <2> to specify a block as

described in the M command.)

P

Moves the cursor to the next page (which is 24 lines
from the top of the screen on the Model 4 and 17 lines
on the Model III).

Q <ENTER>

Exits the Editor. 1If you forgot to save the file
first, type CEDIT * <ENTER> immediately upon exiting
the Editor. The Editor will load with your text
retained in memory.

R <ENTER>

Deletes the current line and enters the insert mode.
Using the J command, if there is @g@@P memory left in
the buffer, executing the R command will delete the
line but will not allow it to be replaced with new
text.

Radie fhaek

MODEL 4 COBOL TRS-80 ® EDITOR

T

Moves the cursor to the top of the text.

U

Moves the cursor to the previous page (which is the 24
preceding lines for Model 4 and 17 lines for Model III).

v

Scrolls current line to the top of the screen.

W filespec $Soptionl... <ENTER>

Saves all text on disk as filespec. filespec is

optional; if

omitted, it is the filespec you used

to load the file. The Editor appends /CBL to filespec
unless it already includes an extension.

The options are:

E

L, ML, OR LM

M

For example:

W SAMPLE

Exits the Editor after saving the file unless
there is an error.

Saves the file with line numbers in this
format: ASCII line number/dummy TAB/text.

Saves the file as a fixed length record (FLR)
file with a LRL of 256 in this format:

text/carriage return

This option is the default. You can use
CEDIT to edit a "DO-file" created with the
TRSDOS "BUILD" command and save this format,
which can be loaded by the TRSDOS "DO"
command.

<ENTER>

saves all text as a file named SAMPLE/CBL.

W SAMPLE

$E

saves text as SAMPLE/CBL. The Editor will exit back to

TRSDOS Ready

after saving the file.

Radio fhaek
- 10 -

MODEL 4 COBOL TRS-80 ® EDITOR

Without using the L or the M options, the Editor saves the
file in the format required by the COBOL Compiler:

Each character is saved exactly as it appears
on the display.

No carriage returns or end of text code is saved.

. Each line is saved in this format:
length/text/

X del stringl del string2 del occurrence

Same as the C command, but prompts before making the
change. Occurrence must range from 1 to 255.

THE INSERT MODE

The I command gets you into the insert mode. Type:

I

(Do not press <ENTER>.) The editor clears the screen and
positions the cursor at the upper left-hand corner. You can
now insert source lines into the edit buffer.

Each source line may have up to 78 characters. After typing
the line, press <ENTER> to insert it. To cancel it and
return to the Editor command mode, press <BREAK>. For
example:

;THIS IS THE FIRST LINE <ENTER>
; THIS IS THE SECOND <ENTER>
;AND HERE IS ANOTHER <BREAK>

inserts only the first two lines in the Editor's memory;
then returns to the Editor command mode.

While inserting lines, you might find it convenient to use
the <right arrow> key. This key is used as a tab key. The
Editor has tabs set every four columns. The first tab
begins at eight with the second at twelve, the third at
sixteen, the fourth at twenty, etc.

NOTE: When the edit buffer is full, it will give you a
buffer full message and return to the command mode.

Radie fhaek

- 11 -

Table 3/ CEDIT Insert Mode Special Keys

<LEFT ARROW> moves cursor back one space and
deletes a character

<ENTER> ends current line, carriage
return, and goes to next line
still in "I" mode.
Note: <ENTER> inserts a blank
line if executed by itself.

<BREAK> cancels current line, and returns
to CMD-mode with the cursor on
the next line.

<RIGHT ARROW> moves to next tab position on the
line.

The LINE EDIT MODE

The E command enters the line edit mode for editing
characters within the current line. When you enter this
mode, the Editor displays the line in reverse video on the
Model 4 only. You can then use any of the edit subcommands
listed in Table 5 or the special edit keys listed in Table

6.

For example, assume the cursor is on the following line:
*THIS IS THE FIRST LINE

To change the word FIRST to THIRD from the command mode,
type:

E

(Do not press <ENTER>.) The Editor will display the line in
reverse video (Model 4 only). You are now in the line edit
mode.

Use the <SPACEBAR> to position the cursor at the F in FIRST
and type:

Radie fhaek

- 12 -

MODEL 4 COBOL

5CTHIRD <ENTER>

This stores the change and returns to the Editor command

mode.

Table 4/ CEDIT Line Edit Mode Subcommands

COMMAND

DESCRIPTION

A

nCstring

Hstring

Istring

nKcharacter

Clears all changes and re-enters
the edit mode for the current line.

Changes the next n characters to

the specified string. If n is
omitted, only one character is
changed. (Press <SHIFT><up arrow> to
exit the change early.)

Deletes n characters. 1If n is
omitted, one character is deleted.

Exits the edit mode and stores
changes.

Deletes the remaining characters,
enters the insert mode and allows you
to insert a string.

Allows you to insert material
beginning at the current cursor
position on the line. Pressing

<left arrow> will delete characters
from the line. The line may be up to
78 characters in length on the Model 4
and 61 characters in length on the
Model III.

Kills all characters preceding the
nth occurrence of the character.*

If n is omitted, the first

occurence is used. If no match is
found, the rest of the line is killed.

Radio fhaek

- 13 -

MODEL 4 COBOL

EDITOR

TRS-80 °

nScharacter

Xstring

Moves cursor to beginning of line.

Quits the edit mode, cancelling all
changes.

Positions the cursor at the nth
occurrence of character.* If no
match is found, positions the cursor
at the end of the 1line.

Moves the cursor to the end of the
line, enters the insert mode, and
allows you to insert a string.

* The compare begins on the character following the current

cursor position.

Table 5/ CEDIT Line Edit Mode Special Keys

<SPACEBAR>

<SHIFT> <up arrow>

<right arrow>

<left arrow>

<ENTER>

Moves cursor one position to the
right.

Returns to edit command mode from the
I, X, C, or H subcommands.

Moves cursor to next tab position
(or the end of the line) while
in the I, X, or H subcommand mode.

Moves cursor one position to the left.

Identical to the E subcommand.

Radio Sfhaek

- 14 -

TRS-80° MODEL a4

RSCOBOL
LANGUAGE
REFERENCE
MANUAL

A Description of the
RSCOBOL Programming
Language

Radio fhaek RGNl

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORPRP

—RM/COBOL lLanquage ___ TRS-80 ©® —RM/COBOL Language

RM/COBOL

COBOL LANGUAGE MANUAL

Radio fhaek

RM/COBOL Language TRS-80 ° RM/COBOL _Language

PREFACE

This document contains the information required to develop
COBOL language programs using the Ryan-McFarland Corporation
RM/COBOL* Compiler. This document is reference in nature
and assumes the user is familiar with the COBOL language.

The reader is specifically referenced to the RM/COBOL User's
Guide applicable to the Operating System to be used.

COPYRIGHT NOTICE
Ryan-MacFarland COBOL (RM/COBOL) is a proprietary product
of:

Ryan-McFarland Corporation
Software Products Group
3233 Valencia Avenue
Aptos, California 95003
(408) 662-2522

The software described in this document is furnished to the
user under a license for use on a single computer system and
may be copied (with inclusion of the copyright notice) only
in accordance with the terms of such license.

Copyright 1988 by Ryan-McFarland Corporation. All rights
reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Ryan-McFarland Corporation.

*RM/COBOL is a registered trademark of Ryan-McFarland
Corporation.

Radio fhaek

- iii -

RM/COBOL Language TRS-80 ° RM/COBOL_Language

ACKNOWLEDGEMENT

Much of the material in this manual is extracted from the
ANSIX3.23-1974 COBOL Standard. Accordingly, the following
acknowledgement is made as required in that document.

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the CODASYL Programming Language Committee
as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted
material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation),
Programing for the UNIVAC I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commercial Translator Form No.
F28-8913, copyrighted 1959 by IBM; FACT, DSI
27A5260-2768, copyrighted 196¢ by Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar
publications.

®

Radio Ffhaek

-] -

RM/COBOL_Language TRS-80 ©

II.

TABLE OF CONTENTS

INTRODUCTION. . ceeeeeeooscccosoncncsns
INTRODUCTION TO COBOL..:cceeeoonssns

What is COBOL?.O.....‘..
The History of COBOL....cev.ns

The Standardization of COBOL..

CONVENTIONS USED IN THIS MANUAL....
Words'l'.I........'.....I.'O..

Brackets and BraC€S.cececeecesse

Table of Contents

.o

EllipsesS..cicececscasscasconcns
Punctuation...eeeeeeccccsssscns
Special Characters....cceceeeee
System Dependent Information...

THE STRUCTURE OF THE COBOL LANGUAGE.

THE LANGUAGE STRUCTURE....cccececee

Character Set..ceeeeccecees

SeparatoOrS.eceecessecesocseanascns
Character-Strings...ceeeececess
COBOL WOrdS..essescsascscsecnss
User WOrdS.ceeeseeoosscscssesasn
Reserved WOrdS...eeeeecccccsces
LiteralsS...c.cceeeeccanscecnccns

Picture String......
Comment~-Entry.......
System NameS........

THE PROGRAM STRUCTURE....
Source Format.......

® o ¢ o 00 00 0

® 5 9 0 0800 00

® 6 9 00 00 000

StatementsS...ceecececcccccsasnns
SentenCeS.ceeeccesossaccnncnocs
Clauses and Entries...cceeeees
ParagraphS..ceeeccecscscscancsnssse
SEeCtiONS .. eeeeeeesoessssssnnssans
DiViSiONS.e.coeeeecsescocsescsescsassscscsasncs

.

.

¢ e o 0o

* o 0 0 0

e o 0 s 0

THE COPY STATEMENT....Q..........‘..‘..'.....

- vii

Radio fhaek

w

NN NN O O b W

O

11
11
14
15
15
16
19
22
23
23
23

24
24
26
27
28
28
28

29

Table of Contents

ITI.

IV.

TRS-80 °

RM/COBOL Lanquage

IDENTIFICATION DIVISION...v.veeeeen

INTRODUCTION.........Q.'..l..."‘.............‘

PROGRAM IDENTIFICATION..... 000
The PROGRAM-ID Paragraph....cceeeececcces
DATE~-WRITTEN,

SECURITY ParagraphS...cceeeceeescscses

the

AUTHOR, INSTALLATION,

¢ o o 0 0

ENVIRONMENT DIVISION..:cceesceeececnnsssoncaas

INTRODUCTION. v eeeeeeceesococcncscss

CONFIGURATION SECTION. :eeecesescococcscscccscs
The SOURCE-COMPUTER Paragraph......c.c...
The OBJECT-COMPUTER Paragraph....ceeeeeee.
The SPECIAL-NAMES Paragraph...ccecececeeces

INPUT-OUTPUT SECTION...¢veseees
FILE-CONTROL Paragraph...ceeeeececess
Sequential File Control Entry........
Relative File Control Entry..........
Indexed File Control Entry..eeeececees
I-O CONTROL Paragraph....ceeeeeesesee

The
The
The
The
The

¢ o 0 00 00000

DATA DIVISIONQI‘.....lO...O........C‘.Il...‘l‘

INTRODUCTION. ccooceecccccccccsccscocnscssssssas

FILE SECTION. .2 ceeeseesescccsoscsce
File Description Entry...ceeeeceeceecess
BLOCK CONTAINS ClauUSE€.ccececccoccecaes
RECORD CONTAINS ClauUSE€..ceeesoccoccoces
LABEL RECORD ClauS€..ccccesscosccacscs

The
The
The
The
The
The

VALUE OF Clause......
DATA RECORDS Clause..

WORKING-STORAGE SECTION.......

® e 0 0 0 0000 000

LINKAGE SECTION.‘..0C.....O..Q..Q.O.C‘..OO.I..

RECORD DESCRIPTION ENTRY ... :iceeescescoscncascs
Level-NUmMberS.uee e eeseseeesecccsccccscsnce
Elementary ItemS....cveeeeeccceccococcses

Radio fhaek

- viii -

33
35

35
36

36

37
39

39
49
40
42

44
44
45
47
49
52

53
55

57
58
59
60
61
61
62

63
63
64

64
64

RM/COBOL Langquage TRS-80 © Table of Contents

VI.

77 LEVEL

THE DATA
The
The
The
The
The
The
The
The
The
The
The
The

DESCRIPTION ENTRY.'.-‘......‘.........

DESCRIPTION ENTRY . e e eeeocecosssccascscse
Level-Number...coeeeeeececccencccccscs
Data name or FILLER ClauS€..eeeeecssees
REDEFINES ClaUSE€.eceoececscsccccccssss
PICTURE ClauUS€.ceececcscovsesscsnccsscs
USAGE ClaUSE . eecececscscocsccncsnssnsses
SIGN ClauSE.eccececosocoacsns N000c0a0a
OCCURS ClaUSC.eceeessecccsccsccsaansssns
SYNCHRONIZED ClaUSE€e.ecesscescascacsos
JUSTIFIED ClauUSE . ceeecessconsncscncssca
BLANK WHEN ZERO ClauUSE€...ceecccocccces
VALUE IS ClaUuSe.cceccecescecscssnnacsas
RENAMES ClauUSE€..cecesoscsssscsssnssse

DATA STRUCTURES .. ¢ecessesccccsccccssoscasasssse
Classes Of Data@..veecececcccececcecccancas
Representation of Numeric Items..........
Representation of Algebraic Signs........
Standard Alignment Rules...... 5000000000C

QUALIFICATION..‘..‘0‘..‘..‘..0.......

SUBSCRIPTING.O.......... *® & © & " & e 0 s 00

INDEXING.....'O..... ® @ 9 5 O P O S O " P e s

IDENTIFIER.. oooooooo ® 6 ® 9 0 0 06 9 0 0 8 00 00000880000

CONDITION_NAME........O...C.O0.0...--..‘ ooooo .

TABLE HANDLING. .. cceeceecocsscocosccascsosscses

PROCEDURE DIVISION..v.ceeecocscossscsccssscsans

THE PROCEDURE DIVISION.:eeeeseososossosccncocnse
Structure..... 5000000000000 00000000000000
DeclarativVeS..eeeeseeeseenscsecsoscsnncsnsns
ProcedUreS..ccececcescecs ceeees 9B 0000003800
EXecUtioN..ceeeeeeevess 0G00A000000G00000C

PROCEDURE REFERENCES.....ccccecceccssccccsna .o

65

66
69
70
71
73
86
88
89
91
93
94
95
98

1099
109
191
191
192
143
195
196
197
198

199

113

115
116
117
117
117

118

Radio fhaek

- ix -

SEGMENTATION. ¢ s et eveenessseccnoosecaccscanscess
=T 11T o ol
Segmentation Classification.......cccc...
Segmentation Control.....ceeeeeceneennnan
Restrictions of Program Flow......e.oeee..

THE USE STATEMENT....ciieeeeeosccscssccnnncense

ARITHMETIC STATEMENT...:ceeeoeeoss

o s 0

® 6 0 006 80 008

Arithmetic EXpressionsS......ceceeeeeseeens
Arithmetic OperatorS....ceeeeeeeeeeeecanss
Formation and Evaluation RuleS...........

CONDITIONALS .. eeeeeesecccoccsanass

e o s

Relation Condition..eeeeeeeeeeeeceoseaans
Class Condition...c.eceeeeeeeeeenecencccsns
Condition-name (Conditional Variable)....
Switch-Status Condition.....eeeeeeeeonass
Complex ConditionS.ceeeeeeeeeeceeoceecens
Negated Simple ConditionS......eeeeeeeans

Combined and Negated Combined

CONAitioNS.eeeeeeeeeeeeeeennossssosses
Condition Evaluation RUlES...eeeeesocoosns

SEQUENTIAL ORGANIZATION INPUT-OUTPUT...veeeeaes
FUNCtion. . cieeeeneeeeeneeeeenceeononnnnas
Organization....ieeeeeeeeeeeeeccenceennans

ACCESS MOAC .. e eeeeeeoenocesososnsoscssnnes

Current Record Pointer.....eeeececescesss

T-0 StatuUS.eecececeeceencnsons

RELATIVE ORGANIZATION INPUT=OUTPUT.. ¢eeeeoesss
FUNCEION. . ittt eeeeeeeeeonseneonnncnnsens
Organization....ieeeeeeceeeeeeeeencennnnnas
ACCESS MOAES ..t eeteecececncnconoosonsensns
Current Record Pointer.....eeeeeeeecosess
I-0 StatUS.vvieeerieecececennneceascsnnnssns
The INVALID KEY Condition...eeeeeceeessss
The AT END Condition.....eeeeeeeeneeceenss

INDEXED ORGANIZATION INPUT-OUTPUT.
FUnCtion....eeeeeeeeeeeneaneas
Organization........... cetean
Access MOdeS..iveeeeeennneesan
Current Record Pointer.......

. o .

® e 8 0 0 2 00 8

© o o 0 0 0 00 0

*« & 0 08 0 00 0

® s 00 8 0 00 0

® e e e 0085 o0

Table of Contents TRS-80 ° RM/COBOL_Language

129
129
121
121
122

123

125
125
126
126

129
129
132
133
133
134
135

135
136

137
137
137
137
137
138

141
141
141
141
142
142
145
146

147
147
147
147
148

Radio fhaek

RM/COBOL Language TRS-80 ° Table of Contents

I-O StatusS..ceeeecees ceseessssesnsnseanas 148

The INVALID KEY Condition....cceeeececeses 151

The AT END Condition......eeeeveees ceceeen 152
PROCEDURAL STATEMENTS. . ¢ ccceescocecsccnassssccsss 153
ACCEPT...FROM Statement....ccceeececeacne .o 153
ACCEPT Statement (Terminal I-0)..eeeeeee . 154

ADD Statement......ceecess cecscssnasnanns 161
ALTER Statement....ceceececoes cesescseresese 165
CALL Statement......cceceeee ceesssssessaas 166
CLOSE Statement (Sequential I-0)...eeesss 168
CLOSE Statement (Relative and Indexed I-0) 179
COMPUTE Statement....cveeeeecacscacscscns 172
DELETE Statement (Relative and Indexed I-0) 174
DISPLAY Statement (Terminal I-O)..cceeen. 175
DIVIDE Statement....eeeeevececccssccnssss 179
EXIT Statement...ceeceeecssscscnsscsoscosse 182

GO TO Statement...ccececeacscssesscscasssse 183

IF Statement..cceeeececeocences sesenoscas 184
INSPECT Statement....... ceessessesssssaae 186
MOVE Statement....ceeeeececcscecscsccncosss 194
MULTIPLY Statement....ccccececcccccccccne 199
OPEN Statement (Sequential I-0)...ceecess 201

OPEN Statement (Relative and Indexed I-O. 205
PERFORM Statement......ceceeees ceceeesens 209

READ Statement (Sequential I-0)....... o 221
READ Statement (Relative and Indexed I-0O. 224
REWRITE Statement (Sequential I-O)....... 229
REWRITE Statement (Relative and Indexed I-0) 231

SET Statement.cccececscoscseasscescscsocsosces 233
START Statement (Relative and Indexed I-O) 235

STOP Statement.c.ceeeveecccscscosccnncscces 237
SUBTRACT Statement..cc.ccececesescssccsasns 238
UNLOCK Statement...ccceeceeccecccccscccancs 242
WRITE Statement (Sequential I-O)......... 243
WRITE Statement (Relative and Indexed I-0) 246
APPENDIX A: ERROR MESSAGES .t eccsoccceossccsssscoscocsns 249
APPENDIX B: RESERVED WORDS . ¢ e eeeeeeccacssnssccsccce 259
APPENDIX C: GLOSSARY.ceeeoew cessssssecscsscccnsrrree 265
APPENDIX D: COMPOSITE LANGUAGE SKELETON...s2eececeee 293

®
Radioe fhaek

- xi -

RM/COBOL Language TRS-80 °© Introduction to COBOL

INTRODUCTION

Radio fhaek

RM/COBOL_Language TRS-80 °© Introduction to COBOL

INTRODUCTION TO COBOL

What is COBOL?

COBOL (COmmon Business Oriented Language) is an English
oriented programming language designed primarily for
developing business applications on computers. It is
described as English oriented because its free form enables
a programmer to write in such a way that the final result
can be read easily and the general flow of the logic can be
understood by persons not necessarily as closely allied with
the details of the problem as the programmer himself.

Because COBOL is a programming language it can be translated
to serve as communication between the programmer and the
computer. The COBOL program (the source program) which has
been written by the programmer is input to the COBOL
compiler. The COBOL compiler then translates the COBOL
program into a machine readable form (the object program.)

Although each computer has its own unique COBOL compiler
program, an industry-wide COBOL effort has resulted in a
degree of compatibility so that a COBOL source program can
be exchanged among different computers of one manufacturer
or among computers of different manufacturers.

A COBOL program is both a readable document and an efficient
computer program. Throughout the study of the COBOL
language, it is important to keep these two basic
capabilities of COBOL in mind and to observe the close
relationship between them.

The readability factor of the COBOL language facilitates
communication not only between programmer and management,
but also among programmers, with a minimum of additional
documentation. The readability factor need not affect the
other equally important capability of constituting an
efficient computer program. It is precisely here that the
attention of a good COBOL programmer is centered. He can
produce a solution in the form of a well-integrated COBOL
program by combining the following: knowledge of the
problem, programming technique, capability of the equipment,
and familiarity with the available elements of the COBOL
language.

Radie fhaek

Introduction to COBOL TRS"BD ® BM‘S;“ESZ“ hangnﬁgg

The History of COBOL

Development of the COBOL programming language is a
continuing process performed by the Programming Language
Committee (PLC) of the COnference on DAta SYstems Languages
(CODASYL). This committee is made up of representatives of
computer manufacturers and computer users.

The first version of the COBOL programming language to be
published by CODASYL was called COBOL-6¢. The second
version, called COBOL-61, contained changes in the
organization of the Procedure Division and thus was not
completely compatible with COBOL-68.

In 1963 the third version, called COBOL-61 Extended, was
released. It was basically COBOL-61 with the addition of
the sort feature, the addition of the report writer feature,
and the modification of the arithmetics to include multiple
receiving fields and the CORRESPONDING option.

The fourth version of the COBOL programming language,
COBOL-65, consists of COBOL-61 Extended with the inclusion
of a series of options to provide for the reading, writing,
and processing of mass storage files and the addition of
table handling features.

Beginning in 1968 the CODASYL COBOL Programming Language
Committee began to report its developmental work in a
Journal of Development. The first report to be published
was the CODASYL COBOL Journal of Development -- 1968. this
journal is the official report of the CODASYL COBOL
Programming Language Committee and it documents the
developmental activities of CODASYL through July 1968.
COBOL-68 is based on COBOL-65 with certain additions and
deletions.

Additional COBOL Journal of Development reports were
published in 1969, 1978 and 1973. Each documented the
developmental activities of CODASYL from the previous
report, resulting in continually varying COBOL definitions.

Radio fhaek

RM/COBOL Language TRS-80 © Introduction to COBOL

The Standardization of COBOL

In September 1962 the American National Standards Institute
(ANSI) set up a committee to work on the definition of a
standard COBOL programming language. This standardization
effort was based on the technical content of COBOL as
defined by CODASYL. In August 1968 an American National
Standard COBOL was approved which was based upon the
developmental work of CODASYL through January 1968. This
first version was called American National Standard COBOL
1968.

In May 1974 a revision of American National Standard COBOL
was approved. This revision, called American National
Standard COBOL 1974, is based upon the developmental work of
CODASYL through December 1971. The COBOL programming
language and the compiler described in this document is
based on the American National Standard COBOL 1974.

Radio fhaek

Introduction to COBOL TRS-80 ° RM/COBOL Language

CONVENTIONS USED IN THIS MANUAL

This manual presents the language definition and
capabilities of COBOL in a generally accepted syntax
consistent with the 1974 American National Standard COBOL
document. As a result, COBOL Syntax is specified by formats
employing special notation.

Words

All underlined uppercase words are key words and are
required when the functions of which they are a part are
used. Uppercase words which are not underlined are optional
and may or may not be present in the source program.
Uppercase words, whether underlined or not, must be spelled
correctly.

Lowercase words are generic terms used to represent COBOL
words, literals, PICTURE character-strings, comment-entries,
or a complete syntactical entry that must be supplied by the
user. When generic terms are repeated in a general format,
a number or letter appendage to the term serves to identify
that term for explanation or discussion.

Brackets and Braces

When a portion of a general format is enclosed in brackets,
[1, that portion may be included or omitted at the user's
choice. Braces, {}, enclosing a portion of a general format
means a selection of one of the options contained within the
braces must be made. In both cases, a choice is indicated
by vertically stacking the possibilities. When brackets or
braces enclose a portion of a format, but only one
possibility is shown, the function of the brackets or braces
is to delimit that portion of the format to which a
following ellipsis applies. If an option within braces
contains only reserved words that are not key words, then
the option is a default option (implicitly selected unless
one of the other options is explicitly indicated).

Radie fhaek

-6 -

RM/COBOL Language TRS-80 © —lntroduction to COBOL
Ellipsis
The ellipsis (...) represents the position at which

repetition may occur at the user's option.

Punctuation

The punctuation characters comma and semicolon are shown in
some formats. Where shown in the formats, they are
optional and may be included or omitted by the user. In the
source program these two punctuation characters are
interchangeable and either may be used anywhere one of them
is shown in the formats. Neither one may appear immediately
preceding the first clause of an entry or paragraph.

If desired, a semicolon or comma may be used between
statements in the Procedure Division.

Paragraphs within the Identification and Procedure

Divisions, and the entries within the Environment and Data
Divisions must be terminated by the separator period.

Special Characters

The characters '+', '=', '>', '<', '=', when appearing in
formats, although not underlined, are required when such
formats are used.

System Dependent Information

Selected features in ANSI COBOL are intended for definition
by the implementor, to accomodate the capabilities and
restrictions of the host system. These system dependent
items are summarized in the COBOL Users Guide.

Radie Shaek

RM/COBOL Langquage TRS-80 ° STRUCTURE

II

THE STRUCTURE OF THE COBOL LANGUAGE

Radio fhaek

RM/COBOL Language TRS-80 °© Character Set

THE LANGUAGE STRUCTURE

The smallest element in the COBOL language is the character.
A character is a digit, a letter of the alphabet, or a
symbol. A COBOL word is one possible result obtained when
one or more COBOL characters are joined in a sequence of
contiguous characters. Just as English words are determined
by rules of spelling, so COBOL words are formed by following
a specific set of rules.

Using the COBOL rules of grammer, the COBOL words and COBOL
punctuation characters are combined into statements,
sentences, paragraphs, and sections. When writing normal
English, a failure to follow the rules of grammar and
sentence structure may cause misunderstanding; the same is
true when writing COBOL. It must be emphasized that a
thorough knowledge of the rules of COBOL structure is a
prerequisite to writing a workable COBOL program.

Character Set

The COBOL character set consists of fifty one characters:
Digits g through 9
Letters A through Z

Punctuation Blank (or space)

Comma

Semicolon

Period

Quote

Left parenthesis

Right parenthesis

=t NN

~ -~

Greater

Less than

Plus

Minus (or hyphen)
Asterisk

Slash (or Stroke)
Equal

Currency

Special

MU %1 + AV

Radio fhaek

-11 -

Character Set TRS-80 ® RM/COBOL_Language

These characters determine the structure of a COBOL program.
In some constructs, such as comments, other characters may
be used but they have no grammatical meaning.

Characters are combined to form either a separator or a
character-string.

Radio fhaek

-12 -

RM/COBOL Language TRS-80 °© Character Set

The COBOL character set is a proper subset of the ASCII
character code set native to the computer. The complete
character set may be used only within non numeric literals
and comments. The chart below gives the hexadecimal and
decimal codes for the complete character set.

Hexadecimal Decimal Hexadecimal Decimal
Character Value Value Character Value Value
Space 20 32 @ a9 64

! 21 33 A 41 65
" 22 34 B 42 . 66
23 35 C 43 67
$ 24 36 D 44 68
% 25 37 E 45 69
& 26 38 F 46 79
! 27 39 G 47 71
(28 40 H 48 72
) 29 41 I 49 73
* 2A 42 J 4A ' 74
+ 2B 43 K 4B 75
, 2C 44 L 4C 76
- 2D 45 M 4D 77
. 2E 46 N 4E 78
/ 2F 47 0 4F 79
") 3¢ 48 P 50 8¢
1 31 49 Q 51 8l
2 32 59 R 52 82
3 33 51 S 53 83
4 34 52 T 54 84
5 35 53 U 55 85
6 36 54 v 56 86
7 37 55 W 57 87
8 38 56 X 58 88
9 39 57 Y 59 89
: 3A 58 yA 5A o
: 3B 59 [5B 91
< 3C 69 / 5C 92
= 3D 61 1 5D 93
> 3E 62 - 5E 94
? 3F 63 - 5F 95
®
Radie fhaek

- 13 -

Separators TRS-80 ® RH(COBOL Lanquage

Separators

A separator is a string of one or more punctuation
characters.

Punctuation characters belong to the following set:

Space

Comma

Equal Sign

Left parenthesis

Period

Quotation Mark (double)
Right parenthesis
Semicolon

2o o~ 0~

-

Separators are formed according to the following rules:

1. A space is a separator. Anywhere a space is used as a
separator, more than one space may be used.

2. Comma, semicolon, and period are separators when
immediately followed by a space. These separators may
appear only when explicitly permitted.

3. Parentheses are separators which may appear only in
balanced pairs of left and right parentheses delimiting
subscripts, indices, arithmetic expressions or
conditions.

Left parentheses must be preceded by a separator space
or left parenthesis.

Right parenthesis must be followed by one of the

separators:
space, period, semicolon, comma or right parenthesis.

4, Quotes are separators which may appear only in balanced
pairs delimiting the nonnumeric literals except when
the literal is continued.

An opening quotation mark must be immediately preceded
by a space or left parenthesis.

A closing quotation mark must be immediately followed

by one of the separators: space, comma, semicolon,
period or right parenthesis.

Radie fhaek

- 14 -

RM/COBOL Language TRS-80 °© Separators

5. The separator space may optionally immediately precede
all separators except:

As specified by reference format rules.

As the separator closing quotation mark. In this case,
a preceding space is considered as part of the
nonnumeric literal and not as a separator.

The separator space may optionally immediately follow
any separator except the opening quotation mark. 1In
this case, a following space is considered as part of
the nonnumeric literal and not as a separator.

Any punctuation character which appears as part of the
specification of a PICTURE character-string or numeric
literal is not considered as a punctuation character, but
rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE
character-strings are delimited only by the separators
space, comma, semicolon, or period.

These rules do not apply to the characters within nonnumeric
literals, picture strings, or comments.

Character-Strings

A character-string is a sequence of one or more characters
that form a COBOL word, literal, picture string, or comment.
Q character-string is delimited by separators.

COBOL Words

A COBOL word is a character-string of not more than 3§
characters which form either a user word or a reserved word.
All words are one or the other.

Radio Shaek

- 15 -

User Words TRS-80 ° RM/COBOL_Language

User Words

User words are composed of the alphabetic characters, the
numbers, and the hyphen character. A user word must not
begin or end with a hyphen. With the exception of
paragraph-name, section-name, level-number and
segment-number, all user-defined words must contain at least
one alphabetic character. There are twelve types of user
words:

program-name condition-name
file-name index~-name
record-name alphabet-name
data-name text-name
paragraph-name level-number
section—-name segment-number

Program-Name

The program-name identifies the COBOL source and obiject
program. The name must contain at least one alphabetic
character. Only the first 6 characters are associated with

the object program.
File-Name

File-names are the internal names for files accessed by the
source program. They are not necessarily the same as the
external names given to the files. File-names must contain
at least one alphabetic character and must be unique.

Record-Name

Record-names are used to name data records within a file.
They must contain at least one alphabetic character and, if
not unique, must be made unique by qualification with the
file name.

Data-Name

A group of contiguous characters or a word of binary data
treated as a unit of data is called a data item, named by a
data-name. A data-name must contain at least one alphabetic
character. References to data items must be made unique by
qualification or the appending of subscripts (or indices) or
both. Complete unique references to data items are called
identifiers.

Radio fhaek

- 16 -

RM/COBOL Language TRS-80 © User Words

Paragraph—-Name

A paragraph-name is a procedure name that identifies the
beginning of a set of COBOL procedural sentences. If not
unique, a paragraph-name must be made unique by
qualification with a section-name.

Section—-Name

A section-name is a procedure name that identifies the
beginning of a set of paragraphs. Section-names must be
unique.

Condition-Name

A condition-name may be defined in the SPECIAL-NAMES
paragraph within the Environment Division or in a
level-number 88 description within the Data Division.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or
OFF STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific
value, set of values, or range of values within a complete
set of values that a data item may assume. The data item
itself is called a conditional variable.

A condition-name is used only in conditions as an
abbreviation for the relation condition which assumes that
the associated switch or conditional variable is equal to
one of the set of values to which that condition-name is
assigned.

Index—-Name

An Index-name names an index associated with a specific
table. It must contain at least one alphabetic character and

must be unique.

Alphabet-Name

An alphabet-name is used to specify a character code set.
It must contain at least one alphabetic character and must

be unique.

Radio fhaek

- 17 -

User Words TRS-80 ° RM/COBOL Language

Text-Name
A text-name is the name of a COBOL library text file. It

must correspond exactly to a valid file access-name as
described in the operating system documentation.

Level-Number

A level-number is used to specify the position of a data
item within a data hierarchy. A level-number is a one- or
two-digit number in the range @1-49, 66, 77 or 88.

Level-numbers 66, 77 and 88 identify special properties of a
data description entry.

Segment-Number

A segment-number specifies the segmentation classification
of a section. It is a one- to two-digit number in the range
g1-99.

Radio fhaek

- 18 -

RM
/COBOL Language TRS-80 °© Reserved Words

Reserved Words

The structure of COBOL governs the use of certain COBOL
words called reserved words. Reserved words, recognized by
the COBOL compiler, aid the compiler in determining how to
generate a program. A programmer cannot devise a reserved
word for a COBOL program; he must use the word designated
by the format of the language. A reserved word must not
appear as a user-defined word within a program. A list of
all reserved words recognized by the compiler is shown in
Appendix B.

Five kinds of reserved words are recognized by the compiler:

Key words

Optional words
Connectives
Figurative constants
Special-characters

Key Words

Key words are required elements of COBOL formats. Their
presence indicates specific compiler action.

Optional Words

Optional words are optional elements of COBOL formats.
Their presence has no effect on the object program.

Connectives

The connectives OF and IN are used interchangeably to
connect qualifiers to a user word. The words AND and OR are
logical connectives and are used in the formation of
conditions.

Figurative Constants

Figurative constants identify commonly used constant values.

Radio Sfhaek

- 19 -

Reserved Words TRS-80 ® RM(COBOL Lanquage

These constant values are generated by the compiler
according to the context in which the references occur.
Note that figuratives represent values, not literal
occurrences. Thus QUOTE cannot be used to delimit a
nonnumeric literal, SPACE is not a separator, and so forth.
Singular and plural forms of figuratives are equivalent and
may be used interchangeably.

ZERO
ZEROS
ZEROES

Represents the value @ or one or more zero (f)
characters, depending on context.

SPACE
SPACES

Represents one or more space () characters.

HIGH-VALUE
HIGH-VALUES

Represents one or more of the highest characters in the
collating sequence (hexadecimal FF).

LOW~VALUE

LOW-VALUES

Represents one or more of the lowest characters in the
collating sequence (hexadecimal #@).

QUOTE

QUOTES

Represents one or more quote (") characters.

Radio fhaek

- 20 -

RM/COBOL Language TRS-80 ° Reserved Words

ALL literal

Represents one or more of the characters comprising the
literal. The literal must be either a nonnumeric literal or
a figurative constant. When a figurative constant is used,
the word ALL is redundant.

When a figurative constant represents a string of one or
more characters, the length of the string is determined by
the compiler from context according to the following rules:

1. When a figurative constant is associated with
another data item, as when the figurative constant
is moved to or compared with another data item,
the string of characters specified by the
figurative constant is repeated character-by
character on the right until the size of the
resultant string is equal to the size in
characters of the associated data item. This is
done prior to and independent of the application
of any JUSTIFIED clause that may be associated
with the data item.

2. When a figurative constant is not associated with
another data item, as when the figurative constant
appears in a DISPLAY or STOP statement, the length
of the string is one character.

A figurative constant may be used wherever a literal appears
in a format, except that whenever the literal is restricted
to having only numeric characters in it, the only figurative
constant permitted is ZERO (ZEROS, ZEROES).

Each reserved word which is used to reference a figurative
constant value is a distinct character-string with the
exception of the construction 'ALL literal' which is
composed of two distinct character-strings.

Special Characters

The special character words are the arithmetic operators and
relation characters:

Plus sign (indexing)
Minus Sign (indexing)
Greater than

Less than

Equal to

AV I +

Radio fhaek

- 21 -

i BOL Language
Literals TRS-80 ° RM/CO guag

Literals

A literal is a character-string whose form determines its
value. Literals are either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is
quotes. Any characters
used. Quote characters
two contiguous quotes.

string itself excluding
each contiguous pair of

a character-string enclosed in

in the COBOL character set may be
within the string are represented by
The value of the literal is the

the delimiting quotes and one of
embedded quotes. The value of the

literal may contain from 1 to 20§47 characters.

Examples:
Literal

"AGE?"
nnn TWENTY nu ? "

Numeric Literals

Value

AGE?
"TWENTY"?
illegal (odd number of quotes)

A numeric literal represents a numeric value, not a
character-string. Numeric literals are composed according

to the following rules:

1. The literal must contain from 1 to 18 digits.

2. The literal may contain a single plus or minus sign if
it is the first character.

3. The literal may contain a single decimal point if it is
not the last character. The decimal point must be
represented with a comma if the DECIMAL-POINT IS COMMA
phrase is specified in the SPECIAL-NAMES paragraph.

Examples:

1234
+1234
-1.234

.1234
+.1234

Radio fhaek

- 22 -

RM/COBOL Language Picture String

TRS-80 °

Picture String

A picture string consists of certain combinations of
characters from the COBOL character set used as symbols.
Any punctuation character appearing as part of a picture
string is considered to be a symbol, not a punctuation
character.

Comment—-Entry

A comment-entry is an entry in the Identification Division
that may contain any characters from the computer's
character set.

System names

System names identify certain hardware or software system
components. System names consist of device-names and
switch-names.

Device-Names Component

PRINT printer or print file
INPUT input only device
OUTPUT output only device
INPUT-OUTPUT input-output device
RANDOM disc

Switch-Names Component

SWITCH-1

. software switches

SWITCH-8

Radie fhaek

- 23 -

Source Format RM/COBOL Language
TRS-80 ° L guag

THE PROGRAM STRUCTURE

Source Format

COBOL programs are accepted as a sequence of formatted lines
(or records) of 8¢ characters or less. Each line is divided
into five areas:

Columns Area

1-6 sequence number
7 indicator

8-11 A

12-72 B

73-840 identification

The sequence number and identification areas are used for
clerical and documentation purposes. They are ignored by
the compiler.

The indicator area is used for denoting line continuation,
comments, and debugging.

Areas A and B contain the actual program according to the
following rules:

1. Division headers, section headers, paragraph headers,
section-names, and paragraph-names must begin in area
A.

2. The Data Division level indicator FD and level-numbers
Pl and 77 must begin in area A. Other level-numbers
may begin in area A or area B, although B is
preferable.

3. The key word DECLARATIVES and the key words END
DECLARATIVES, precede and follow, respectively, the
declaratives portion of the Procedure Division. Each
must appear on a line by itself and each must begin in
area A and be followed by a period and a space.

4. Any other language element must begin in area B unless
it immediately follows, on the same line, an element in
area A.

Radio fhaek

- 24 -

RM/COBOL Language Source Format

TRS-80 °

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more
than one line, it may be continued by starting subsequent
line(s) in area B. These subsequent lines are called the
continuation lines(s). The line being continued is called
the continued line. Any word or literal may be broken in
such a way that part of it appears on a continuation line,
according to the following rules:

1. A hyphen in the indicator area of a line indicates that
the first nonblank character in area B of the current
line is the successor of the last nonblank character of
the preceding line without any intervening space.
However, if the continued line contains a nonnumeric
literal without closing quotation mark, the first
nonblank character in area B on the continuation line
must be a quotation mark, and the continuation starts
with the character immediately after that quotation
mark. All spaces at the end of the continued line are
considered part of the literal. Area A of continuation
line must be blank.

2. If there is no hyphen in the indicator area of a line,

it is assumed that the last character in the preceding
line is followed by a space.

Blank Lines

A blank line is one that is blank in the indicator, A and B
areas. A blank line can appear anywhere in the source
program, except immediately preceding a continuation line
with a hyphen in the indicator area.

Comment Lines

A comment line is any line with an asterisk (*) in the
indicator area of the line. A comment line can appear as
any line in a source program after the Identification
Division header. Any combination of characters from the
computer's character set may be included in area A and area
B of that line. The asterisk and the characters in area A
and area B will be produced on the listing but serve as
documentation only.

Radio fhaek

- 25 -

Statements TRS-80 ° RM/COBOL_Language

Debugging Lines

A debugging line is any line with a D in the indicator area
of the line. Any debugging line that consists solely of
spaces from area A to the identifier area is considered to
be a blank line.

A program that contains debugging lines must be
syntactically correct with or without the debugging lines.

A debugging line will be considered to have all the
characteristics of a comment line if the debug option is not
specified at compiler invocation.

Successive debugging lines are allowed. Continuation of
debugging lines is permitted, except that each continuation
line must contain a D in the indicator area, and character
strings may not be broken across two lines.

Statements

COBOL statements always begin with a key word called a verb.
There are three kinds of statements: directive,
conditional, and imperative.

A directive statement specifies action to be taken by the
compiler during compilation. The directive statements are:

The COPY and USE statements.
A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action
of the object program is dependent on this truth value. The
conditional statements are:

An IF statement.

A READ statement with the AT END or INVALID KEY phrase.

Radio fhaek

- 26 -

RM/COBOL Language TRS-80 © Statements

A DELETE, REWRITE or START statement with the INVALID KEY
phrase.

A WRITE statement with the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) with the SIZE ERROR phrase.

An imperative statement specifies an unconditional action to
be taken by the object program. The imperative statements
are:

A READ statement without the AT END or INVALID KEY
phrase.

A DELETE, REWRITE or START statement without the
INVALID KEY phrase.

A WRITE statement without the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE,
MULTIPLY, SUBTRACT) without the ON SIZE ERROR phrase.

An ACCEPT, ALTER, CLOSE, DISPLAY, EXIT, GO, INSPECT,
MOVE, OPEN, PERFORM, SET or STOP statement.

Whenever the term imperative-statement appears in the format
of a COBOL verb, it refers to one or more consecutive
imperative statements. The sequence ends with a period
separator or an ELSE associated with an IF verb.

Sentences

A sentence is a sequence of one or more statements
terminated by the period separator. There are three kinds
of sentences: directive, conditional, and imperative.

A directive sentence may contain only a single directive
statement.

Radio fhaek

- 27 -

Statements TRS-80 ° RM/COBOL Language

A conditional sentence is a conditional statement,
optionally preceded by a sequence of imperative statements,
terminated by a period followed by a space.

An imperative sentence is one or more imperative statements
terminated by a period separator.

Clauses and Entries

An entry is an item of descriptive or declaratory nature
composed of consecutive clauses. Each clause specifies an
attribute of the entry. Clauses are separated by space,
comma, or semicolon separators. The entry is terminated by
a period separator.

Paragraphs

A paragraph is a sequence of an arbitrary number, which may

be zero, of sentences or entries. In the Identification and
Environment Divisions, each paragraph begins with a reserved
word called a paragraph header. In the Procedure Division,

each paragraph begins with a user-defined paragraph-name.

Sections

A section is a sequence of an arbitrary number, which may be
zero, of paragraphs in the Environment and Procedure
Divisions and a sequence of an arbitrary number, which may
be zero, of entries in the Data Division. 1In the
Environment and Data Divisions, each section begins with
reserved words called a section header. 1In the Procedure
Division, each section begins with a user-defined
section-name.

Radio fhaek

- 28 -

RM(COBOL Language TRS-80 ® COPY Statement

Divisions

Each COBOL program consists of four divisions; each is
composed of paragraphs or sections. These are the
Identification, Environment, Data and Procedure divisions,
in that order. All divisions are required. Each division
begins with a group of reserved words called a division
header.

THE COPY STATEMENT

The COPY statement provides the facility for copying text
from user-specified files into the source program. Text is
copied from the file without change. The effect of the
interpretation of the COPY statement is to insert text into
the source program, where it will be treated by the compiler
as part of the source program.

COBOL library text is placed on the COBOL library as a
function independent of the COBOL program and according to
operating system techniques.

FORMAT
COPY Text-name.

The COPY statement must be preceded by a space and
terminated by the separator period. There must not be any
additional text in area B following the separator period.

Text-name is the external identification of the file
containing the text to be copied. 1Its format conforms to
the rules for filename (or pathname) construction of the
host operating system. If the external identification

Radie fhaek

- 29 -

COPY Statement TRS-80 ° RM/COBOL_Language

contains any characters that are not letters or digits, or
if the first character is not a letter, then the text-name
must be written as a nonnumeric literal and enclosed in
quotation marks.

A COPY statement may occur in the source program anywhere a
character string or separator may occur except that a COPY
statement must not occur within a COPY statement.

The compilation of a source program containing COPY
statements is logically equivalent to processing all COPY
statements prior to the processing of the resulting source
program.

The effect of processing a COPY statement is that the
library text associated with text-name is copied into the
source program, logically replacing the entire COPY
statement, beginning with the reserved word COPY and ending
with the punctuation character period, inclusive.

The library text is copied unchanged.

Debugging lines are permitted within library text. If a
COPY statement is specified on a debugging line, then the
COPY statement will be processed only if the debug option
has been specified in the compiler invocation options.

The text produced as a result of processing a COPY statement
may not contain a COPY statement.

The syntactic correctness of the library text cannot be
independently determined. The syntactic correctness of the
entire COBOL source cannot be determined until all COPY
statements have been completely processed.

Radio Sfhaek

- 39 -

RM/COBOL Language TRS-80 ® COPY Statement

Library text must conform to the rules for COBOL source
format.

COPY Examples:

FILE~-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY "INPUTP.COBOL".

Radio fhaek

- 31 -

RM/COBOL Language IDENTIFICATION DIVISION

TRS-80 °

IIT

IDENTIFICATION DIVISION

Radio fhaek

- 33 -

RM/COBOL Language IDENTIFICATION DIVISION

TRS-80 °

INTRODUCTION

The Identification Division must be included in every COBOL
source program. This division identifies both the source
program and the resultant object program. In addition, the
user may include other commentary information.

FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry] ...l

[SECURITY. [comment-entry] ...]

PROGRAM IDENTIFICATION

The Identification Division must begin with the reserved
words IDENTIFICATION DIVISION followed by a period and a
space.

Paragraph headers identify the type of information contained
in the paragraph. The name of the program must be given in
the first paragraph, which is the PROGRAM-ID paragraph. The
other paragraphs are optional and may be included at the
user's choice, in the order of presentation shown.

Radio Sfhaek

- 35 -

PROGRAM~-ID Paragraph RM/COBOL Language

TRS-80°

The PROGRAM-ID Paragraph

The PROGRAM-ID paragraph, containing the program-name,
identifies the source program, the object program and all
listings pertaining to a particular program. A program-name
is a user-defined word made up of only those characters from
the word set.

A program-name cannot exceed 8 characters in length, and
must contain at least one alphabetic character located in
any position within the program-name. Each program-name
must be unique.

The AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY
Paragraphs

The AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY
paragraphs are optional. The programmer may use these
paragraphs to document information pertaining to the
paragraph header.

The comment-entry may be any combination of characters from
the computer's characters set. The continuation of the
comment-entry by the use of the hyphen in the indicator area
is not permitted; however, the comment-entry may be
contained on one or more lines.

Radio fhaek

- 36 -

RM/COBOL Language TRS-80 © ENVIRONMENT DIVISION

Iv

ENVIRONMENT DIVISION

Radio fhaek

- 37 -

RM/COBOL Language SOURCE-COMPUTER Paragraph

TRS-80 °

INTRODUCTION

The Environment Division describes the hardware
configuration of the compiling computer (source computer)
and the computer on which the object program is run (object
computer). It also describes the relationship between the
files and the input/output media.

The Environment Division must be included in every COBOL
source program.

There are two sections in the Environment Division: the
Configuration Section and the Input-Output Section.

FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name.

OBJECT-COMPUTER. computer-name.

[SPECIAL-NAMES. special-names-entryl.

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry} ...

[I-O-CONTROL. input-output-control-entryll.

CONFIGURATION SECTION

The Configuration Section deals with the characteristics of
the source computer and the object computer. This section
is divided into three paragraphs:

Radio fhaek

- 39 -

SOURCE-COMPUTER Paragraph RM/COBOL Language

TRS-80°

the SOURCE-COMPUTER paragraph, which describes the
computer configuration on which the source program is
compiled

the OBJECT-COMPUTER paragraph, which describes the
computer configuration on which the object program
produced by the compiler is to be run

the SPECIAL-NAMES paragraph, which relates names used
by the compiler to user-names in the source program.

The SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon
which the program is to be compiled.

FORMAT

SOURCE-COMPUTER. computer-name.

Computer-name is a user-defined word and is only commentary.

The OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on
which the program is to be executed.

FORMAT

OBJECT-COMPUTER. computer-name

[,MEMORY SIZE integer {WORDS }
{CHARACTERS}

{MODULES }
[,PROGRAM COLLATING SEQUENCE IS alphabet-name].
Computer-name is a user-defined word and is only commentary.

The MEMORY SIZE definition is treated as commentary.

Radio fhaek
- 49 -

RM/COBOL Language ® SOURCE-COMPUTER Paragraph

TRS-80

The PROGRAM COLLATING SEQUENCE clause specifies the program
collating sequence to be used in determining the truth value
of any nonnumeric comparisons. The Program Collating
Sequence clause is treated as commentary; the collating
sequence is always ASCII.

Radio fhaek

- 41 -

SPECIAL-NAMES Paragraph RM/COBOL Language

TRS-80 °

The SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates names used by the
compiler to user-names in the source program.

FORMAT

[SPECIAL-NAMES. [, switch-name

{ON STATUS IS cond-name-1 [,OFF STATUS IS cond-name-2]}1...
{OFF STATUS IS cond-name-2 [,ON STATUS IS cond-name-1]}

[' a-].m—m IS {SﬂNDARD‘l}]..;
{NATIVE }

[,CURRENCY SIGN IS literal-l1]

[,DECIMAL-POINT IS COMMA] .]

Switch-name may be SWITCH-1, ..., SWITCH-S8.

At least one condition-name must be associated with each
switch-name given. The status of the switch is specified by
condition-names and interrogated by testing the
condition-names.

Radio fhaek

- 42 -

RM/COBOL Language SPECIAL~-NAMES Paragraph

TRS-80 °

The alphabet-name clause provides a means for relating a
name to a specified character code set and/or collating
sequence. The alphabet-name definition is treated as
commentary; the collating sequence is always ASCII.

The literal which appears in the CURRENCY SIGN IS literal
clause is used in the PICTURE clause to represent the
currency symbol. The literal is limited to a single
character and must not be one of the following characters:

digits @ through 9;

alphabetic characters A, B, C, D, L, P, R, S, VvV, X, Z,
or the space;

special characters '*', '+', 6 '=', v, v, rer, o,
l)i, !"', '/l’ '=|.

If this clause is not present, only the currency sign ($) is
used in the PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function of
comma and period are exchanged in the character-string of
the PICTURE clause and in numeric literals.

Radio fhaek

- 43 -

INPUT-OUTPUT SECTION RM/COBOL Language

TRS-80 °©

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section names the files and external media
required by an object program and provides information
required for transmission and handling of data during
execution of the object program. This section is divided
into two paragraphs:

the FILE-CONTROL paragraph which names and associates
the files with external media.

the I-O-CONTROL paragraph which defines special control
techniques to be used in the object program.

FORMAT

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{file-control-entry} ...

[I-0-CONTROL.
I-O-control-entryl]

The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file and allows
specification of other file-related information.

FORMAT

FILE-CONTROL. {file-control-entry} ...

The content of the file~-control-entry is dependent upon the
organization of the file named.

Radio fhaek

- 44 -

RM/COBOL Language Sequential File Control

TRS-80 °

The Sequential File Control Entry

FORMAT
SELECT file-name

ASSIGN TO device-type, {"external-file-name"}
{data~name-1 }

[;ORGANIZATION IS_SEQUENTIAL]

[;ACCESS MODE IS SEQUENTIAL]

[;FILE STATUS IS data-name-2].

The SELECT clause must be specified first in the file
control entry. The clauses which follow the SELECT clause
may appear in any order.

Each file described in the Data Division must be named once
and only once as file-name in the FILE-CONTROL paragraph.
Each file specified in the file control entry must have a
file description entry in the Data Division.

The ASSIGN clause specifies the association of the file
referenced by file-name to a storage medium.

Device-type must be one of the device names INPUT,
INPUT~-OUTPUT, OUTPUT, PRINT, or RANDOM according to the
operations to be performed.

External~-file-name specifies the file access name. It can
be from one to thirty characters in length and must be
enclosed in quotation marks. A name longer than thirty
characters will be diagnosed as an error. The name may
contain any sequence of characters supported by the
operating system for file access names.

Data-name-1 must be defined in the Data Division as a data
item of category alphanumeric and must not be defined in the
Linkage Section. Its value at the time of an OPEN statement
execution will be used as the file access name. Data-name-1
may be qualified.

LT

Radie fhae

- 45 -

Sequential File Control RM/COBOL Language

TRS-80 °

The ORGANIZATION clause specifies the logical structure of a
file. The file organization is established at the time a
file is created and cannot subsequently be changed.

Records in the file are accessed in the sequence dictated by
the file organization. This sequence is specified by
predecessor-successor record relationships established by
the execution of WRITE statements when the file is created
or extended.

When the ORGANIZATION clause is not specified, ORGANIZATION
IS SEQUENTIAL is implied.

The ACCESS MODE clause specifies the order in which records
are read or written.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a value will be
moved by the operating system into the data item specified
by data-name-2 after the execution of every statement that
references that file either explicitly or implicitly. This
value indicates the status of execution of the statement.

Data-name-2 must be defined in the Data Division as a
two-character data item of the category alphanumeric and
must not be defined in the File Section. Data-name-2 may be
qualified.

Radio Sfhaek

- 46 -

RM/COBOL Language Relative File Control
3729 TRS-80 °

The Relative File Control Entry

FORMAT
SELECT file-name

ASSIGN TO RANDOM, {"external-file-name"}
{data-name-1 }

;ORGANIZATION IS RELATIVE

[;ACCESS MODE IS { SEQUENTIAL [,RELATIVE KEY IS data-name-2]}]

{{RANDOM} ,RELATIVE KEY IS data-name-2 }
{{DYNAMIC} }

[;FILE STATUS IS data-name-3].

The SELECT clause must be specified first in the file
control entry. The clauses which follow the SELECT clause

may appear in any order.

Each file described in the Data Division must be named once
and only once as file-name in the FILE-CONTROL paragraph.
Each file specified in the file control entry must have a
file description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the
file referenced by file-name to a storage medium.

External-file-name specifies the file access name and must
be enclosed in quotation marks. It can be from one to
thirty characters in length. A name longer than thirty
characters will be diagnosed as an error. The name may
contain any characters supported by the operating system for
file access names.

Data-name-1 must be defined in the Data Division as a data
~item of category alphanumeric and must not be defined in the
Linkage Section. Its value at the time of an OPEN statement
execution will be used as the file access name.

Data-name-1 may be qualified.

Radio fhaek

- 47 -

——Relative File Control TRs.-80) ¢ ———BMLCOBOL Language. .

The ORGANIZATION IS RELATIVE clause specifies the logical
structure of a file. The file organization is established
at the time a file is created and cannot subsequently be
changed.

All records stored in a relative file are uniquely
identified by relative record numbers. The relative record
number of a given record specifies the record's logical
ordinal position in the file. The first logical record has
a relative record number of one (1), and subsequent logical
records have relative record number of 2, 3, 4, ...n.

The ACCESS MODE clause specifies the order in which records
are to be accessed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated by the file organization.
This sequence is the order of ascending relative record
numbers of existing records in the file.

If the ACCESS MODE IS RANDOM, the value of the RELATIVE KEY
data item indicates the record to be accessed.

If a relative file is to be referenced by a START statement,
the RELATIVE KEY phrase must be specified for that file.

When the ACCESS MODE IS DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

Data-name-2 must not be defined in a record description
entry associated with that file-name. The data item
referenced by data-name-2 must be defined as an unsigned
integer. Data-name-2 may be qualified.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a value will be
moved by the operating system into the data item specified
by data-name-3 after the execution of every statement that
references that file either explicitly or implicitly. This
value indicates that status of execution of the statement.

Data-name-3 must be defined in the Data Division as a
two-character data item of the category alphanumeric and
must not be defined in the File Section.

Radie fhaek

- 48 -

—RM/COROL Landquade __ TRS-80 ¢ —iddexed File Control

The Indexed File Control Entrv

FORMAT
SELECT file-~name

ASSIGN TO RANDOM, {"external-file-name®}
{data-name-1 }

[;ORGANIZATION IS INDEXED

[;ACCESS MODE IS {SEQUENTIAL}]
{ RANDOM }
{DYNAMIC }

:RECORD KEY IS data-name-2

[;ALTERNATE RECORD KEY IS data-name-3 [WITH DUPLICATESI]...

[:FILE STATUS IS data-—name-4].

The SELECT clause must be specified first in the file
control entry. The clauses which follow the SELECT clause
may appear in any order.

Each file described in the Data Division must be named once
and only once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control entry must have a
file description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the
file referenced by file-name to a storage medium.

External~file-name specifies the file access name and must
be enclosed in quotation marks. It can be from one to
thirty characters in length. A name longer than thirty
characters will be diagnosed as an error. The name may
contain any characters supported by the operating system for
file access names.

Data-name-1 must be defined in the Data Division as a data
item of category alphanumeric and must not be defined in the

Radio fhaek

- 49 -

—indexed File Control TRS-80 ¢ ——BM/COBOL Languade. ...

Linkage Section. Its value at the time of an OPEN statement
execution will be used as the file access name. Data-name-1
may be qualified.

The ORGANIZATION IS INDEXED clause specifies the logical
structure of a file. The file organization is established
at the time a file is created and cannot subsequently be
changed.

The ACCESS MODE clause specifies the order in which records
are to be accessed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated by the file organization.
For indexed files this sequence is the order of ascending
record key values within a given key of reference.

If the ACCESS MODE IS RANDOM, the value of the RECORD KEY
data item indicates the record to be accessed.

When the ACCESS MODE IS DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

The RECORD KEY clause specifies the record key that is the
prime record key for the file. This prime record key
provides an access path to records in an indexed file.

An ALTERNATE RECORD KEY clause specifies a record key that
is an alternate record key for the file. This alternate
record key provides an alternate access path to records in
an indexed file.

The data description of data-name-2 and data-name-3 as well
as their relative locations within a record must be the same
as that used when the file was created. The number of
alternate keys for the file must also be the same as that
used when the file was created.

The data items referenced by data-name-2 and data-name-3
must each be defined as a data item of the category
alphanumeric within a record description entry associated
with that file-name.

Radio Sfhaek

- 50 -

——RM/COBOL Languade __ TRS-80 © ——lndexed File Control

Neither data-name-2 nor data-name-3 can describe an item
whose size is variable.

Data-name-3 cannot reference an item whose leftmost
character position corresponds to the leftmost character
position of an item referenced by data-name-2 or by any
other data-name-3 associated with this file.

Data-name-2 and data-name-3 may be qualified.

The WITH DUPLICATES phrase specifies that the value of the
associated alternate record key may be duplicated within any
of the records in the file. 1If the WITH DUPLICATES phrase
is not specified, the value of the associated alternate
record key must not be duplicated among any of the records
in the file.

When the FILE STATUS clause is specified, a value will be
moved by the operating system into the data item specified
by data-name-4 after the execution of every statement that
references that file either explicitly or implicitly. This
value indicates the status of execution of the statement.

Data-name-4 must be defined in the Data Division as a
two-character data item of the category alphanumeric and
must not be defined in the File Section.

Radio Shaek

- 51 -

—1-0 CONTROL Paragraph TRSs-80 © —BM/COROL Languade

The I-0 CONTROL Paragraph

The I-O CONTROL paragraph specifies the memory area which is
to be shared by different files.

FORMAT

I-0-CONTROL.

[: SAME AREA FOR file-name-l1l [, file-name-2] ...] ...
The I-O-CONTROL paragraph is optional.

The SAME AREA clause specifies that two or more files are to
use the same memory area during processing. The area being
shared includes all storage area assigned to the files
specified; therefore, it is not valid to have more than one
of the files open at the same time.

More than one SAME clause may be included in a program;
however, a file-name must not appear in more than one SAME
AREA clause.

The files referenced in the SAME AREA clause need not all
have the same organization or access.

Radio fhaek

- 52 -

RM/COBOL Language TRS-80 ° DATA DIVISION

v

DATA DIVISION

Radio fhaek

- 53 -

RM/COBOL_Language TRS-80 ° Introduction

INTRODUCTION

The Data Division describes the data that the object program
is to accept as input, to manipulate, to create, or to
produce as output. Data to be processed falls into three
categories:

That which is contained in files and enters or leaves
the internal memory of the computer from a specified
area or areas.

That which is developed internally and placed into
intermediate or working storage, or placed into
specific format for output reporting purposes.

Constants which are defined by the use.

The Data Division, which is one of the required divisions in
a program, is subdivided into three sections:

The FILE SECTION defines the structure of data files.
Each file is defined by a file description entry and
one or more record descriptions. Record descriptions
are written immediately following the file description
entry.

The WORKING-STORAGE SECTION describes records and
noncontiguous data items which are not part of external
data files but are developed and processed internally.
It also describes data items whose values are assigned
in the source program and do not change during the
execution of the object program.

The LINKAGE SECTION in a program is meaningful if and
only if the object program is to function under the
control of a CALL statement, and the CALL statement in
the calling program contains a USING phrase.

The Linkage Section is used for describing data that is
available through the calling program but is to be
referred to in both the calling and the called program.
No space is allocated in the program for data items
referenced by data-names in the Linkage Section of that
program. Procedure Division references to these data

Radio fhaek

- 55 -

Introduction TRS-80 © BOL Lan

items are resolved at object time by equating the
reference in the called program to the location used in
the calling program. In the case of index-names, no
such correspondence is established. Index-names in the
called and calling program always refer to separate

indices.

Data items defined in the Linkage Section of the called
program may be referenced within the Procedure Division

of the called program only if they are specified as
operands of the USING phrase of the Procedure Division
header or are subordinate to such operands, and the
object program is under the control of a CALL statement
that specifies a USING phrase.

FORMAT

DATA DIVISION.

[FILE SECTION.

[file-description-entry
[record-description~entryl] ...] ...]

[WORKING-STORAGE SECTION.

[77-level~-description-entry] ...l
[record-description—-entry 1

[LINKAGE SECTION.

[77-1level-description-entry] ...1]
[record-description-entry |

Radio fhaek

- 56 -

RM/COBOL Language TRS-80 ° FILE SECTION

FILE SECTION

The File Section header is followed by a file description
entry consisting of a level indicator (FD), a file-name and
a series of independent clauses. The FD clauses specify the
size of the logical and physical records, the presence or
absence of label records, the value of label items, and the
names of the data records which comprise the file. The
entry itself is terminated by a period.

In a COBOL program the file description entry (FD)
represents the highest level or organization in the File

Section.

FORMAT

FILE SECTION.

[file-description-entry
[record-description-entryl] ...] ...

Radie fhaek

- 57 -

The File Description Entry

The File Description furnishes information concerning the
physical structure, identification, and record name
pertaining to a given file.

FORMAT

FD file—name

[;BLOCK CONTAINS [integer-1 TO] integer-2 {RECORDS }]
{CHARACTERS }

[;RECORD CONTAINS [integer-3 TO] integer—-4 CHARACTERS]

;LABEL. {RECORD IS } {STANDARD }
{RECORDS ARE } {QMITTED }

[;VALUE OF LABEL IS [literal-1]]

[;DATA {RECORD IS } data-name-1 [,data-name-2]...1].
{RECORDS ARE }

The level indicator FD identifies the beginning of a file
description and must precede the file-name.

The clauses which follow the name of the file are optional
in many cases, and their order of appearance is not
significant.

One or more record description entries must followed the
file description entry.

A file description entry must end with a period separator.

Radio fhaek

- 58 -~

RM/COBOL Language TRS-80 °© BLOCK _CONTAINS Clause

The BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical
record.

FORMAT

BLOCK CONTAINS [integer-1 TO] integer-2 {RECORDS }
{CHARACTERS}

This clause is required except when:

A physical record contains only one complete logical
record.

The device assigned to the file has only one physical
record size.

The device assigned to the file has a standard record
size, although the device may have more than one
physical record size. 1In this case, the absence of
this clause denotes the standard physical record size.

The size of the physical record may be stated in terms of
RECORDS, unless one of the following situations exist, in
which case the RECORDS phrase must not be used:

In mass storage files where logical records may extend
across physical records.

The physical record contains padding.

Logical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified, the physical record
size is specified in terms of the number of character
positions required to store the physical record, regardless
of the types of characters used to represent the items
within the physical record.

If only integer-2 is shown, it represents the exact size of
the physical record. If integer-1 and integer-2 are shown,
they refer to the minimum and maximum size of the physical
record, respectively.

Radio fhaek

- 59 -

RECORD CONTAINS QlaugeTRs_so ® RM/COBOL Languade

The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of the data
records.

FORMAT
RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

The size of each data record is completely defined with the
record description entry, therefore this clause is never
required. When present, however, the following notes apply:

Integer-2 may not be used by itself unless all the data
records in the file have the same size. In this case
integer-2 represents the exact number of characters in

the data record.

If integer-1 and integer-2 are both shown, they refer
to the minimum number of characters in the smallest
size data record and the maximum number of characters
in the largest size data record, respectively.

The size is specified in terms of the number of
character positions required to store the logical
record, regardless of the types of characters used to
represent the items within the logical record. The
size of a record is determined by the sum of the number
of characters in all fixed length elementary items plus
any filler characters generated between elementary
items because of the SYNCHRONIZED clause.

Radio fhaek

- 68 -

RM/COBOL Language TRS-80 °© RD Clause

The LABEL RECORD Clause

The LABEL RECORD clause specifies whether labels are
present.

FORMAT

LABEL {RECORD IS } {STANDARD}
{RECORDS ARE } {OMITTED }

This clause is required in every file description entry.

STANDARD specifies that labels exist for the file or the
device to which the file is assigned and the labels conform
to the operating system specification. STANDARD must be
specified for files assigned to a RANDOM device.

OMITTED specifies that no explicit labels exist for the file
or the device to which the file is assigned.

The VALUE OF Clause

The VALUE OF clause particularizes the description of an
item in the label records associated with a file.

FORMAT

VALUE OF LABEL IS literal-1l

This clause is treated as commentary.

This clause must not be specified if OMITTED is specified in
the LABEL RECORDS clause.

Radio fhaek

- 61 -

DATA RECORDS Clause TRS-80 ° RM/COBOL Language

The DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the
names of data records with their associated file.

FORMAT

DATA {RECORD IS } data-name-1 [,data-name-2]...
{RECORDS ARE }

Data-name-1 and data-name-2 are the names of data records
and must have @1 level-number record descriptions, with the
same name, associated with them.

The presence of more than one data-name indicates that the
file contains more than one type of data record. These
records may be of differing sizes, different formats, etc.
The order in which they are listed is not significant.

Conceptually, all data records within a file share the same
area. This is in no way altered by the presence of more than
one type of data record within the file.

Radio fhaek

- 62 -

RM/COBOL Language TRS-80 ® WORKING-STORAGE SECTION

WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section
header, followed by data description entries for 77 level
description entries and/or record description entries.

The data-name of a Fl-level data description entry in the
Working-Storage Section must be unique since it cannot be

qualified. Subordinate data-names need not be unique if
they can be made unique by qualification.

FORMAT

WORKING-STORAGE SECTION.

[77-1level-description-entryl] ...
[record-description-entry 1

LINKAGE SECTION

The structure of the Linkage Section is the same as for the
Working-Storage Section, beginning with a section header,
followed by data description entries for noncontiguous data
items and/or record description entries.

Each Linkage Section record-name and noncontiguous item name
must be unique within the called program since it cannot be
qualified.

FORMAT

LINKAGE SECTION.

[77-1level-description-entryl] ...
[record-description-entry]

Radio Shaek

- 63 -

Record Description Entry TRS-80 © RM/COBOL_Language

RECORD DESCRIPTION ENTRY

A record description entry consists of a set of data
description entries which describe the characteristics of a
particular record. Each data description entry consists of
a level-number followed by a data-name and a series of
independent clauses, as required.

FORMAT

{data~-description-entry} ...

Level-Numbers

The first data description of a record must have a
level-number of @1 or 1, and must start in area A of a

source line.

Each data description entry can be subdivided into multiple
data description entries, each having the same level-number;
which must be greater than the level-number of the
subdivided entry, but less than 5@§. Level-numbers do not
necessarily have to be successive. Thus, a record is a
hierarch of data description entries.

Elementary Items

Any data description entry which is not further subdivided
is called an elementary item A record itself may be an
elementary item, consisting of a single level @1 data
description entry. A subdivided data description entry with
its subdivisions is called a group and is non-elementary.
Therefore, a group includes all group and elementary items
following it until a level-number less than or equal to the
level-number of that group is encountered.

Note that certain clauses of the data description entry may
occur only in elementary items. They may not occur in
gl-level entry as they may affect the subdivisions of that
entry. An elementary item must have either a PICTURE clause

or INDEX usage; it may not have both.

Radie fhaek

- 64 -

RM/COBOL Language TRS-80 ® 77 Level Description Entry

77 LEVEL DESCRIPTION ENTRY

In the Working-Storage and Linkage Sections, a special
level-number of 77 can be used in data description entries
which are not subdivisions of other items, and are not
themselves subdivided. These data description entries
specify noncontiguous data items. Such a data description

entry is elementary.

A 77 level description entry must contain a data name and
either the PICTURE clause or the USAGE IS INDEX clause, but
cannot contain an OCCURS clause. Other clauses are optional
and can be used to complete the description of the item if

necessary.

FORMAT

data-description-entry

Radio fhaek

- 65 -

Data Description Entry TRS-80 °© RM/COBOL ILangquage

THE DATA DESCRIPTION ENTRY

A data description entry specifies the characteristics of a
particular item of data.

FORMAT 1

level-number {data-name-1}
{FILLER }

[;REDEFINES data-name-2]

[; {PICTURE} IS character-string]
{PIC }

[; [USAGE IS] {COMPUTATIONAL
{CoMP
{COMPUTATIONAL-1
{CoMP-1
{COMPUTATIONAL-3
{COMP-3
{DISPLAY
{INDEX

St gt Nt gt gat S Sengnt gt

1

[;[SIGN IS} {TRAILING} [SEPARATE CHARACTER]]

[; {OCCURS {integer-1 TIMES
{integer-1 TO integer-2 TIMES DEPENDING ON data-name-3}

[INDEXED BY index-name-1l [,index-name-2] ...]]

[; {SYNCHRONIZED} [LEFT]
{SYNC } [RIGHT]I

[; {SYNCHRONIZED} [LEFTI]
{SYNC } [RIGHT]]

[; {JUSTIFIED} RIGHT]
{JUST }

[;BLANK WHEN ZERO]

[;VALUE IS literall

Radio fhaek

- 66 -

RM/COBOL Language TRS-80 ® Data Description Entry

FORMAT 2

66 data-name-1; RENAMES data-name-2 [{THROUGH} data-name-3].
{THRU }

FORMAT 3

88 condition-name; {VALUE IS } literal-l [{THROUGH} literal-2]
{VALUES ARE } {THRU }

[,literal-3 [{THROUGH} literal-4]]
{THRU }

The clauses may be written in any order with two exceptions:

the data-name-1 or FILLER clause must immediately
follow the level-number;

the REDEFINES clause, when used, must immediately
follow the data-name-1 clause.

The PICTURE clause must be specified for every elementary
item except an index data item, in which case use of this
clause is prohibited.

The words THRU and THROUGH are equivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO, must not be specified except for an elementary data
item.

L

Radio fhae

- 67 -

Data Description Entry TRS-80 ® RM/COBOL Language

Format 3 is used for each condition-name. Each
condition-name requires a separate entry with level-number
88. Format 3 contains the name of the condition and the
value, values, or range of values associated with the
condition-name. The condition-name entries for a
particular conditional variable must follow the entry
describing the item with which the condition-name is
associated. A condition-name can be associated with any
data description entry which contains a level-number except

the following:
Another condition-name.

A group containing items with descriptions including
JUSTIFIED, SYNCHRONIZED or USAGE (other than USAGE IS
DISPLAY).

An index data item.
A level 66 item.

Each data description entry must end with a period
separator.

Radie fhaek

- 68 -

RM/COBOL Language TRS-80 © Level-Number

The Level-Number

The level-number shows the hierarchy of data within a
logical record. 1In addition, it is used to identify entries
for working storage items, linkage items, condition-names
and the RENAMES clause.

FORMAT

level-number

A level-number is required as the first element in each data
description entry.

Data description entries subordinate to an FD entry must
have level-numbers with the values @1 through 49, 66 or 88.

Data description entries in the Working-Storage Section and
Linkage Section must have level-numbers with the values f1
through 49, 66, 77 or 88.

The level-number @1 identifies the first entry in each
record description.

Level-number 66 is assigned to identify RENAMES entries.

Level-number 77 is assigned to identify noncontiguous
working storage data items and noncontiguous linkage data
items.

Level-number 88 is assigned to identify condition-names
associated with a conditional variable.

Multiple level @1 entries subordinate to any given level
indicator FD, represent implicit redefinitions of the same
area.

Radio fhaek

- 69 -

Data-name/FILLER Clause TRS-80 ° RM/COBOL Language

The Data-name or FILLER Clause

A data-name specifies the name of the data being described.
The word FILLER specifies an elementary item of the logical
record that cannot be referred to explicity.

FORMAT

{data-name}
{FILLER }

A data-name or the key word FILLER must be the first word
following the level-number in each data description entry.

The key word FILLER may be used to name an elementary item
in a record. Under no circumstances can a FILLER item be
referred to explicitly. However, the key word FILLER may be
used as a conditional variable because such use does not
require explicit reference to the FILLER item, but to its
value.

The key word FILLER may not be used in data description
entries with a 1, g1, 77, or 88 level-number.

Radie fhaek
- 78 -

RM/COBOL Language TRS-80 °© REDEFINES Clause

The REDEFINES Clause

The REDEFINES clause allows the same computer storge area to
be described by different data description entries.

FORMAT
level—-number data-name-l; REDEFINES data-name-2

NOTE: Level-number, data-name-1 and the semicolon are
shown in the above format to improve clarity.
Level-number and data-name-1 are not part of the
REDEFINES clause.

The REDEFINES clause, when specified, must immediately
follow data-name-1.

The level-numbers of data—name-1 and data-name-2 must be
identical but must not be 66 or 88.

This clause must not be used in level @1 entries in the File
Section.

The data description entry for data-name-2 cannot contain a
REDEFINES clause. Data-name-2 may be subordinate to an
entry which contains a REDEFINES clause. The data
description entry for data-name-2 cannot contain an OCCURS
clause. However, data-name-2 may be subordiate to an item
whose data description entry contains an OCCURS clause. In
this case, the reference to data-name-2 in the REDEFINES
clause may not be subscripted or indexed. Neither the
original definition nor the redefinition can include an item
whose size is variable as defined in the OCCURS clause.

No entry having a level-number numerically lower than the
level-number of data-name-2 and data-name-1 may occur
between the data description entries of data-name-2 and

data-name-1.

Redefinition starts at data-name-2 and ends when a
level-number less than or equal to that of data-name-2 is

encountered.

@

Radie Shaek

- 71 -

N RM
REDEFINES Clause TRS-80 °© /COBOL Language

When the level-number of data-name-l1 is other than g1, it
must specify the same number of character positions that the
data item referenced by data-name-2 contains. It is
important to observe that the REDEFINES clause specifies the
redefinition of a storage area, not of the data items
occupying the area.

Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the
area being redefined without intervening entries that define
new character positions. Multiple redefinitions of the same
character positions must all use the data-name of the entry
that originally defined the area.

The entries giving the new description of the character
positions must not contain any VALUE clauses except in
condition-name entries.

Multiple level @1 entries subordiante to any given level
indicator represent implicit redefinitions of the same area.

Radio fhaek

- 72 -

RM/COBOL Language TRS-80 °© PICTURE Clause

The PICTURE Clause

The PICTURE clause describes the general characteristics and
editing requirements of an elementary item.

FORMAT

{PICTURE} IS character-string
{PIC }

A PICTURE clause can be specified only at the elementary
item level.

A character-string consists of certain allowable
combinations of characters in the COBOL character set used
as symbols. The allowable combinations determine the
category of the elementary item.

The maximum number of characters allowed in the
character—-string is 30.

The PICTURE clause must be specified for every elementary
item except an index data item, in which case use of this
clause is prohibited.

PIC is an abbreviation for PICTURE.

There are five categories of data that can be described with
a PICTURE clause:

alphabetic

numeric
alphanumeric
alphanumeric edited
numeric edited

To define an item as alphabetic:

Its PICTURE character-string can only contain the
symbols 'A', and/or 'B'.

Its contents when represented in standard data format
must be any combination of the twenty-six (26) letters
of the Roman alphabet and the space from the COBOL
character set.

Radie Sfhaek

- 73 -

PICTURE Clause TRS-80 ° RM/COBOL Language

To define an item as numeric:

Its PICTURE character-string can only contain the
symbols '9', 'P', 'S', and 'V'. The number of digit
positions that can be described by the PICTURE
character-string must range from 1 to 18 inclusive; and

If unsigned, its contents when represented in standard
data format must be a combination of the Arabic
numerals Ig" ‘l'l '2" 831'14l' !Sl’ l6l’ l‘7l’ l8l,
'9'; if signed, the item may also contain a '+', '-',

or other representation of an operational sign.

To define an item as alphanumeric:

Its PICTURE character-string is restricted to certain
combinations of the symbol 'A', 'X', '9', and the item
is treated as if the character-string contained all
X's. A PICTURE character-string which contains all A's
or all 9's does not define an alphanumeric item; and

Its contents, when represented in standard data format,
are allowable characters in the computer's character
set.

To define an item as alphanumeric edited:

Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'A', 'X', '9',
'BY, '@', and '/' (stroke);

The character-string must contain at least one 'B' and
at least one 'X' or at least one '@' (zero) and at
least one 'X' or at least one '/' (stroke) and at least
one 'X'; or

The character-string must contain at least one '§#'
(zero) and at least one 'A' or at least one '/’
(stroke) and at least one 'A'; and

The contents when represented in standard data format
are allowable characters in the computer's character

set.

To define an item as numeric edited:

Radio fhaek

- 74 -

RM/COBOL_Language TRS-80 °© PICTURE Clause

Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'B', '/'
(stroke), 'P', lvl, lzl, !gi’ 191' I’I' l‘l’ |*|, l_l’
'+', 'CR', 'DB', and the currency symbol. The
allowable combinations are determined from the order of
precedence of symbols and the editing rules; and

The number of digit positions that can be represented
in the PICTURE character-string must range from 1 to 18
inclusive; and

The character-string must contain at least one '{',
'B', I/' (stroke), IZI' l*!’ l+l, ',!' |'l' '_'! ICRI'
'DB', or currency symbol.

The contents of the character positions of these
symbols that are allowed to represent a digit in
standard data format, must be one of the numerals.

The size of an elementary item, where size means the number
of character positions occupied by the elementary item in
standard data format, is determined by the number of
allowable symbols that represent character positions. An
integer which is enclosed in parentheses following the
symbols lAl’ |,|' lxl' 191’ IPI, 'Z', v*v' 'B', l/l
(stroke), or 'g', '+', '-', or the currency symbol indicates
the number of consecutive occurrences of the symbol. Note
that the following symbols may appear only once in a given
PICTURE: 's', 'v', '.', 'CR', and 'DB'.

The functions of the symbols used to describe an elementary
item are explained as follows:

Each 'A' in the character-string represents a character
position which can contain only a letter of the
alphabet or a space.

Each 'B' in the character-string represents a character
position into which the space character will be
inserted.

Each 'P' indicates an assumed decimal scaling position
and is used to specify the location of an assumed
decimal point when the point is not within the number
that appears in the data item. The scaling position
character 'P' is not counted in the size of the data
item. Scaling position characters are counted in

Radio fhaek

- 75 -

TURE
PICTU Clause TRS-80 °© RM/COBOL Language

determining the maximum number of digit positions (18)
in numeric edited items or numeric items. The scaling
position character 'P' can appear only to the left or
right as a continuous string of 'P's within a PICTURE
description; since the scaling position character 'P'
implies an assumed decimal point (to the left of 'P's
if "P's are leftmost PICTURE characters and to the
right if 'P's are rightmost PICTURE characters), the
assumed decimal point symbol 'V' is redundant as either
the leftmost or rightmost character within such a
PICTURE description. The character 'P' and the
insertion character '.' (period) cannot both occur in
the same PICTURE character-string. If, in any
operation involving conversion of data from one form of
internal representation to another, the data item being
converted is described with the PICTURE character 'P',
each digit position described by a 'P' is considered to
contain the value zero, and the size of the data item
is considered to include the digit positions so
described.

The letter 'S' is used in a character-string to
indicate the presence, but neither the representation
nor, necessarily, the position of an operational sign;
it must be written as the leftmost character in the
PICTURE. The 'S' is counted in determining the size
(in terms of standard data format characters) of
elementary items having DISPLAY or COMPUTATIONAL usage.

The 'V' is used in a character-string to indicate the
location of the assumed decimal point and may only
appear once in a character-sting. The 'V' does not
represent a character position and therefore is not
counted in the size of the elementary item. When the
assumed decimal point is to the right of the rightmost
symbol in the string the 'V' is redundant.

Each 'X' in the character-string is used to represent a
character position which contains any allowable
character from the computer's character set.

Each 'Z' in a character-string may only be used to
represent the leftmost leading numeric character
positions which will be replaced by a space character
when the contents of that character position is zero.
Each 'Z' is counted in the size of the item.

Radio fhaek

- 76 -

RM/COBOL _Language TRS-80 ° PICTURE Clause

Each '9' in the character-string represents a character
position which contains a numeral and is counted in the

size of the item.

Each '@' (zero) in the character-string represents a
character position into which the numeral zero will be
inserted. The '@' is counted in the size of the item.

Each '/' (stroke) in the character-string represents a
character position into which the stroke character will
be inserted. The '/' (stroke) is counted in the size

of the item.

Each ',' (comma) in the character-string represents a
character position into which the character ',' will be
inserted. This character position is counted in the

size of the item. The insertion character ',' must not

be the last character in the PICTURE character-string.

When the character '.' (period) appears in the
character-string it is an editing symbol which
represents the decimal point for alignment purposes and
in addition, represents a character position into which
the character '.' will be inserted. The character '.'
is counted in the size of the item. For a given
program the functions of the period and comma are
exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this
exchange the rules for the period apply to the comma
and the rules for the comma apply to the period
wherever they appear in a PICTURE clause. The
insertion character '.' must not be the last character

in the PICTURE character-string.

+, -, CR, DB. These symbols are used as editing sign
control symbols. When used, they represent the
character position into which the editing sign control
symbol will be placed. The symbols are mutually
exclusive in any one character-string and each
character used in the symbol is counted in determining

the size of the data item.

Each '*' (asterisk) in the character-string represents
a leading numeric character position into which an
asterisk will be placed when the contents of that
position is zero. Each '*' is counted in the size of
the item.

Radio fhaek

- 77 -

PICTURE Clause 1FF?ES-53CJ(3 RM/COBOL Language

The asterisk when used as the zero suppression symbol
and the clause BLANK WHEN ZERO may appear in the same
entry.

The currency symbol in the character-string represents
a character position into which a currency symbol is to
be placed. The currency symbol in a character-string
is represented by either the currency sign or by the
single character specified in the CURRENCY SIGN IS
clause in the SPECIAL-NAMES paragraph. The currency
symbol is counted in the size of the item.

There are two general methods of performing editing in the
PICTURE clause, either by insertion or by suppression and
replacement. There are four types of insertion editing
available:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

There are two types of suppression and replacement editing:

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is
dependent upon the category to which the item belongs. The
following table specifies which type of editing may be
performed upon a given category:

Radie fhaek

- 78 -

RM/COBOL Language TRS-80 ° PICTURE Clause

| CATEGORY TYPE OF EDITING |
|Alphabetic Simple insertion 'B' only
[Numeric Nane I
| Alphanumeric None |
Alphanumeric Simple insertion '@', 'B', l
Edited and '/' (stroke)

Numeric All, subject to rules below ‘
Edited

Floating insertion editing and editing by zero suppression
and replacement are mutually exclusive in a PICTURE clause.
Only one type of replacement may be used with zero
suppression in a PICTURE clause.

Radio fhaek

- 79 -

PICTURE Clause/Editing TRS-80 © RM/COBOL Langquage

Simple Insertion Editing

The ',' (comma), 'B" (space), '#', (zero), and '/' (stroke)
are used as the insertion characters. The insertion
characters are counted in the size of the item and represent
the position in the item into which the character will be

inserted.

Special Insertion Editing

The '.' (period) is used as the insertion character. 1In
addition to being an insertion character it also represents
the decimal point for alignment purposes. The insertion
character used for the actual decimal point is counted in
the size of the item. The use of the assumed decimal point,
represented by the symbol 'V' and the actual decimal point,
represented by the insertion character, in the same PICTURE
character-string is disallowed. The result of special
insertion editing is the appearance of the insertion
character in the item in the same position as shown in the

character-string.

Fixed Insertion Editing

The currency symbol and the editing sign control symbols,
'+', '-', 'CR,, 'DB', are the insertion characters. Only
one currency symbol and only one of the editing sign control
symbols can be used in a given PICTURE character-string.
When the symbols 'CR' or 'DB' are used they represent two
character positions in determining the size of the item and
they must represent the rightmost character positions that
are counted in the size of the item.

The symbol '+' or '~-', when used, must be either the
leftmost or rightmost character position to be counted in
the size of the item.

The currency symbol must be the leftmost character position
to be counted in the size of the item except that it can be
preceded by either a '+' or a '-' symbol.

Radio fhaek

- 8¢ -

RM/COBOL Language TRS-80 © PICTURE Clause/Editing

Fixed insertion editing results in the insertion character
occupying the same character position in the edited item as
it occupied in the PICTURE character-string.

Editing sign control symbols produce the following results
depending upon the value of the data item:

s oot o S s T . - o T o o — iy s (0Y Sy D S o D A) S D S S D M D S S WD R W W U o T S o

EDITING SYMBOL IN RESULT
B T R I L e e
CHARACTER~-STRING DATA ITEM DATA ITEM
POSITIVE OR ZERO NEGATIVE

+ + -

= space =

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols, '+' or
'-', are the floating insertion characters and as such are
mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the
floating insertion characters. This string of floating
insertion characters may contain any of the fixed insertion
symbols or have fixed insertion characters immediately to
the right of this string. These simple insertion characters
are part of the floating string.

The leftmost character of the floating insertion string
represents the leftmost limit of the floating symbol in the
data item. The rightmost character of the floating string
represents the rightmost limit of the floating symbols in
the data items.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the
data item. Nonzero numeric data may replace all the
characters at or to the right of this limit.

Radio fhaek

- 81 -

PICTURE Clause/Editing TRS-80 °© RM/COBOL Language

In a PICTURE character-string, there are only two ways of
representing floating insertion editing. One way is to
represent any or all of the leading numeric character
positions on the left of the decimal point by the insertion
character. The other way is to represent all of the numeric
character positions in the PICTURE character-string by the
insertion character.

If the insertion characters are only to the left of the
decimal point in the PICTURE character-string, the result is
that a single floating insertion character will be placed
into the character position immediately preceding either the
decimal point or the first nonzero digit in the data
represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The
character positions preceding the insertion character are
replaced with spaces.

If all numeric character positions in the PICTURE
character-string are represented by the insertion character,
the result depends upon the value of the data. If the value
is zero the entire data item will contain spaces. If the
value is not zero, the result is the same as when the
insertion character is only to the left of the decimal

point.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the
number of characters in the sending data item, plus the
number of non-floating insertion characters being edited
into the receiving data item, plus one for the floating
insertion character.

Zero Suppression Editing

The suppression of leading zeroes in numeric character
positions is indicated by the use of the alphabetic
character 'Z' or the character '*' (asterisk) as suppression
symbols in a PICTURE character-string. These symbols are
mutually exclusive in a given PICTURE character-string. Each
suppression symbol is counted in determining the size of the
item. If 'Z' is used the replacement character will be the
space and if the asterisk is used, the replacement character

will be '*',

Radio fhaek

- 82 -

RM/COBOL Language TRS-80 ° PICTURE Clause/Editing

In a PICTURE character-string, there are only two ways of
representing zero suppression. One way is to represent any
or all of the leading numeric character positions to the
left of the decimal point by suppression symbols. The other
way is to represent all of the numeric character positions
in the PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the
decimal point, any leading zero in the data which
corresponds to a symbol in the string is replaced by the
replacement character. Suppression terminates at the first
nonzero digit in the data represented by the suppression
symbol string or at the decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE
character-string are represented by suppression symbols and
the value of the data is not zero the result is the same as
if the suppression characters were only to the left of the
decimal point. If the value is zero and the suppression
symbol is 'Z', the entire data item will be spaces. If the
value is zero and the suppression symbol is '*', the data
item will be all '*' except for the actual decimal point.

The symbols '+', '=', '*', '7z', and the currency symbol,
when used as floating replacement characters, are mutually
exclusive within a given character-string.

The picture precedence chart show the order of precedence
when using characters as symbols in a character-string. An
'X' at an intersection indicates that the symbol(s) at the
top of the column may precede, in a given character-string,
the symbol(s) at the left of the row. Arguments appearing
in braces indicate that the symbols are mutually exclusive.
the currency symbol is indicated by the symbol 'cs'.

At least one of the symbols 'A', 'X', 'Z', '9', or '*' or at
least two of the symbols '+', '-', or 'cs' must be present
in a PICTURE string.

Radio fhaek

- 83 -

PICTURE Clause/Editing TRS-80 °© RM/COBOL Language

Nonfloating insertion symbol '+' and '-', floating insertion
symbols 'z', '*', '+4+', '-', and 'cs', and other symbol 'P'
appear twice in the PICTURE character precedence chart. The
leftmost column and uppermost row for each symbol represent
its use to the left of the decimal point position. The
second appearance of the symbol in the chart represents its
use to the right of the decimal point position.

Radio fhaek

- 84 -

RM/COBOL Language —TRS-
\lst Non-Floating Floating Other
2;2{?;01 Insertion Symbols Insertion Symbols Symbols
sym-\ |B|@|/|'|.|{+}|{+}[{R}|CS | {2} |{2}|{+}|{+}|cs|cs| 9|als|v|r|P
bol \ | | | | | [{=}|{-}]{DB}| =[] x|
B X|x|x|x|x] x| | [x| x| x| x| x| x| x| xIx|] |X] |X
o |x|x|x|x|x] x| | [x| x| x| x| x| x| x| xIx|] |X] |X
g / |XIx|x|X|x] x| | x| x| x| x| x| x| x| XXl [|X] |X
g o XXX x] x| x| x[x|x]x|xx]][x]]x
g xIx[[g| [x| | x| x| x| [Ixl |x[[]]
L 0 T T O O [B LT
g +- XXl x| ox x|l xx]] [x[x]x
DB (X[X[x|x|x] | | x| x|x| | |x]xx[]I[xx]x
cs [T Ix] | | I O I LT
o xxix Tx L x| x] 1 1 LI
§Z*XIXIXIXIXIXI | Ix | xIx| | | | [Ix] |x
2+-XlXIXIxH |1 Ix S I RN
g + - xIxxxixl | | X | Ixlx]| | | Ixl Ix
N G xIxlglg| | x| | | N I I I ¢ NN
cs [x|x[x[x|x] x| | | L0 hxbxp X Ix
e xxixixixl x| | x| x| Ix [[xl | xxxlx| |x
OAXXIXIXIHII | N N O (N
T S 0 T T T I R [T I LTl
g vl x| Tx|ox] Ix] x| x| x| x|
pooxxIxIx] x| | Ix| x| x| [|x| [x]I[x][x]
P 0 T O A T B I ¢ I I | IxIx] |x

PICTURE Character Precedence Chart

Radio fhaek

- 85 -

USAGE Clause TRS-80 ° RM/COBOL Language

The USAGE Clause

The USAGE clause specifies the format of a data item in the
computer storage.

FORMAT

[USAGE IS 1 {COMPUTATIONAL
{COMP
{COMPUTATIONAL-1
{COMP-1
{COMPUTATIONAL-3
{CoMP-3
{DISPLAY
{ INDEX

gt At Ngnt St Ayt Nl St e

This clause specifies the manner in which a data item is
represented in the storage of a computer. It does not
affect the use of the data item, although the specifications
for some statements in the Procedure Division may restrict
the USAGE clause of the operands referenced.

The USAGE clause can be written at any level. If the USAGE
clause is written at a group level, it applies to each
elementary item in the group. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a
group to which the item belongs.

If the USAGE clause is not specified for an elementary item,
or for any group to which the item belongs, the usage is
implicitly DISPLAY.

A COMPUTATIONAL (COMPUTATIONAL-1l, COMPUTATIONAL-3) item
represents a value to be used in computations and must be
numeric. If a group is described as COMPUTATIONAL, then the
elementary items in the group are COMPUTATIONAL. The group
itself is not COMPUTATIONAL (cannot be used in
computations.)

The format of a COMPUTATIONAL item is one decimal digit per
character position (hexadecimal @g@-g9). If an 'S' appears
in the PICTURE character-string, a trailing byte contains
the sign with > 2B being generated for positive and > 2D
being generated for negative. COMPUTATIONAL items will be
treated as negative if the sign character is > 2D; otherwise
they will be considered positive.

Radio fhaek

- 86 -

RM/COBOL Language TRS-80 ° USAGE Clause

The format of a COMPUTATIONAL-1l item (abbreviated COMP-1) is
16 bit two's complement signed binary, independent of the
number of nines or appearance of 'S' in the PICTURE
character-string. The number of nines is significant when
the value is converted to decimal during data manipulation.
The value of a COMPUTATIONAL-1 item ranges between -32768

and 32767.

The format of a COMPUTATIONAL-3 item is two decimal digits
per character position.

The PICTURE character-string of a COMPUTATIONAL,
COMPUTATIONAL-1 or COMPUTATIONAL-3 item can contain only
'9's, the operational sign character 'S', the implied
decimal point character 'V', one or more 'P's. Since a
COMPUTATIONAL-1 item must have zero scale it cannot contain
any 'P's in its PICTURE character string and if it has a 'V'
in its PICTURE character-string the 'V' must be the
rightmost character.

The USAGE IS DISPLAY clause indicates that the format of the
data is ASCII.

An elementary item described with the USAGE IS INDEX clause
is called an index data item and contains a value which must
correspond to an occurence number of a table element. If a
group item is described with the USAGE IS INDEX clause the
elementary items in the group are all index data but the
group item name cannot be used in the SET statement or in a
relation condition.

An index data item can be referenced explicitly only in a
SET statement or a relation condition.

The initial value of an index item is undefined.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN
ZERO clauses cannot be used to describe group or elementary
items described with the USAGE IS INDEX clause.

An index data item can be part of a group which is referred
to in a MOVE or input-output statement, in which case no
conversion will take place.

The external and internal format of an index data item is
the same as a COMPUTATIONAL-1 item.

Radio fhaek

- 87 -

SIGN Clause TRS-80 ® RM/COBOL Language

The SIGN Clause

The SIGN clause specifies the position and the mode of
representation of the operational sign when it is necessary
to describe these properties explicitly.

FORMAT
[SIGN IS] {TRAILING} [SEPARATE CHARACTERI

The optional SIGN clause, if present, specifies the position
and the mode of representation of the operational sign for
the numeric data description entry to which it applies, or
for each numeric data description entry subordinate to the
group to which it applies. The SIGN clause applies only to
numeric data description entries whose PICTURE contains the

character 'S'.

The operational sign will be presumed to be the trailing
character position of the elementary numeric data item; this
character position is not a digit position.

The letter 'S' in a PICTURE character-string is counted in
determining the size of the item (in terms of standard data
format characters).

The operational signs for positive and negative are the
standard data format characters '+' and '-', respectively.

The numeric data description entries to which the SIGN
clause applies must be described as usage is DISPLAY.

At most one SIGN clause may apply to any given numeric data
description entry.

Radie fhaek

- 88 -

RM/COBOL_Language TRS-80 ° OCCURS Clause

The OCCURS Clause

The OCCURS clause eliminates the need for separate entries
for repeated data items and supplies information required
for the application of subscripts or indices.

FORMAT 1

OCCURS integer-1 TIMES
[INDEXED BY index-name-l [,index-name-2] ...]

FORMAT 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-l
[INDEXED BY index-name-1l [,index-name-2] ...]

The OCCURS clause is used in defining tables and other
homogeneous sets of repeated data items. Whenever the
OCCURS clause is used, the data-name which is the subject of
this entry must be either subscripted or indexed whenever it
is referred to in a statement. Further, if the subject of
this entry is the name of a group item, then all data-names
belong to the group must be subscripted or indexed whenever
they are used as operands, except as the object of a
REDEFINES clause.

The OCCURS clause cannot be specified in a data description
entry that:

Has an @1, 66, 77, or an 88 level-number.

Describes an item whose size is variable. The size of
an item is variable if the data description of any
subordinate item contains Format 2 or the OCCURS
clause.

Except for the OCCURS clause itself, all data description
clauses associated with an item whose description includes
an OCCURS clause apply to each occurrence of the item
described.

The number of occurrences of the subject entry is defined as
follows:

Radio fhaek

- 89 -

OCCURS Clause TRS-80 ° RM/COBOL Language

In Format 1, the value of integer-1 represents the
exact number of occurrences.

In Format 2, the current value of the data item
referenced by data-name-l1 represents the number of
occurrences.

This format specifies that the subject of this
entry has a variable number of occurrences. The
value of integer-2 represents the maximum number
of occurrences and the value of integer-1
represents the minimum number of occurences. This
does not imply that the length of the subject of
the entry is variable, but that the number of
occurrences is variable.

The value of the data item referenced by
data-name-1 must fall within the range integer-1
through integer-2. Reducing the value of the data
item referenced by data-name-1 makes the contents
of data items, whose occurrence numbers now exceed
the value of the data item referenced by
data-name-1l, unpredictable.

Where both integer-l1 and integer-2 are used, the
value of integer-1 must be less than the value of
integer-2.

The data description of data-name-1 must describe
a positive integer. Data-name-1l may be qualified.

A data description entry that contains Format 2 of
the OCCURS clause may only be followed, within
that record description, by data description
entries which are subordinate to it.

When a group item, having subordinate to it an entry that
specifies Format 2 of the OCCURS clause, is referenced, only
that part of the table area that is specified by the value
of data-name-1l will be used in the operation.

An INDEXED BY phrase is required if the subject of this
entry, or an entry subordinate to this entry, is to be
referred to by indexing. The index-name identified by this
clause is not defined elsewhere since its allocation and
format are dependent on the hardware, and not being data,
cannot be associated with any data hierarchy.

Radie fhaek

- 99 -

RM/COBOL _Language TRS-80 ° SYNCHRONIZED Clause

The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an
elementary item on an even byte boundary.

FORMAT

{SYNCHRONIZED} [LEFT]
{SYNC } [RIGHTI

This clause specifies that the subject data item is to be
aligned in the computer such that no other data item
occupies any of the character positions between the leftmost
and rightmost natural boundaries delimiting this data item.
If the number of character positions required to store this
data item is less than the number of character positions
between those natural boundaries, the unused character
positions (or portions thereof) must not be used for any
other data item. Such unused character positions, however,
are include in:

The size of any group item(s) to which the elementary
item belongs; and

The character positions redefined when this data item
is the object of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to
be positioned such that it will begin at the left character
position of the next available even byte. If the data item
contains an odd number of bytes, one trailing byte of FILLER

is implied.

SYNCHRONIZED not followed by either RIGHT or LEFT is
equivalent to the clause SYNCHRONIZED LEFT.

SYNC is an abbreviation for SYNCHRONIZED.
This clause may only appear with an elementary item.

SYNCHRONIZED RIGHT specifies that the elementary item is to
be positioned such that it will terminate on the right
character position of an integral even byte boundary. If
the data item contains an odd number of bytes, a leading
byte of FILLER is implied.

Radio fhaek

- 91 -

SYNCHRONIZED Clause TRS-80 ® RM/COBOL Language

Whenever a SYNCHRONIZED item is referenced in the source
program, the original size of the item, as shown in the
PICTURE clause, is used in determining any action that
depends on size, such as justification, truncation or
overflow.

If the data description of an item contains the SYNCHRONIZED
clause and an operational sign, the sign of the item appears
in the normal operation sign position, regardless of whether
the item is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data
description entry of a data item that also contains an
OCCURS clause, or in a data description entry that contains
an OCCURS clause, then:

Each occurrence of the data item is SYNCHRONIZED.

Any implicit FILLER generated for other data items
within that same table are generated for each
occurrence of those data items.

Records of a file and index data items are automatically
synchronized left. Records and noncontiguous data-items in
working-storage begin on the next available byte unless the
first elementary item is synchronized.

The format on external media of records or groups containing
elementary items described with the SYNCHRONIZED clause
includes any implied FILLER bytes.

When the data item preceding a data item described with the
SYNCHRONIZED clause does not terminate on a byte whose
address is even, then one implied FILLER byte is generated.
Such automatically generated FILLER positions are included
in:

The size of any group to which the FILLER item belongs;

and

The number of character positions allocated when the
group item of which the FILLER item is a part appears
as the object of a REDEFINES clause.

Radio fhaek

- 92 -

RM‘ QOBOL Language TRS'BO ® gggZIFlgg g;gggg

The JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of
data within a receiving data item.

FORMAT

{JUSTIFIED} RIGHT
{JusT }

When a receiving data item is described with the JUSTIFIED
clause and the sending data item is larger than the
receiving data item, the leftmost characters are truncated.
When the receiving data item is described with the JUSTIFIED
clause and it is larger than the sending data item, the data
is aligned at the rightmost character position in the data
item with space-fill for the leftmost character positions.

When the JUSTIFIED clause is omitted, the standard rules for
aligning data within an elementary item apply.

The JUSTIFIED clause cannot be specified for any data item
described as numeric or for which editing is specified.

The JUSTIFIED clause can be specified only at the elementary
item level.

JUST is an abbreviation for JUSTIFIED.

Radio fhaek

- 93 -

BLANK WHEN ZERO Clause TRS-80 ° RM/COBOL Language

The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item
when its value is zero.

FORMAT

BLANK WHEN ZERO

The BLANK WHEN ZERO clause can be used only for an
elementary item whose PICTURE is specified as numeric or
numeric edited.

The BLANK WHEN ZERO clause cannot appear in the same entry
with a PICTURE clause having an asterisk as the zero
suppression symbol.

When the BLANK WHEN ZERO clause is used, the item will
contain nothing but spaces if the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose
PICTURE is numeric, the category of the item is considered
to be numeric edited.

Radio fhaek

- 94 -

RM/COBOL Language TRS-80 © VALUE IS Clause

The VALUE IS Clause

The VALUE IS clause defines the initial value of working
storage items, and the values associated with a
condition~name.

FORMAT 1

VALUE IS literal

FORMAT 2

{VALUE IS } literal-l [{THROUGH} literal-2]
{VALUES ARE} {THRU }

[,literal-3 [{THROUGH} literal-4]] ...
{ THRU }

The VALUE clause cannot be stated for any items whose size
is variable.

A signed numeric literal must have associated with it a
signed numeric PICTURE character-string.

All numeric literals in a VALUE clause of an item must have
a value which is within the range of values indicated by the
PICTURE clause, and must not have a value which would
require truncation of nonzero digits. Nonnumeric literals
in a VALUE clause of an item must not exceed the size
indicated by the PICTURE clause.

The words THRU and THROUGH are equivalent.

The VALUE clause must not conflict with other clauses in the
data description of the item or in the data description
within the hierarchy of the item. The following rules

apply:

1. If the category of the item is numeric, all literals in
the VALUE clause must be numeric. If the literal
defines the value of a working storage item, the
literal is aligned in the data item according to the
standard alignment rules.

Radio Shaek

- 95 -

VALUE IS Clause TRS-80 °© RM/COBOL Language

2. If the category of the item is alphabetic,
alphanumeric, alphanumeric edited or numeric edited,
all literals in the VALUE clause must be nonnumeric
literals. The literal is aligned in the data item as
if the data item had been described as alphanumeric.
Editing characters in the PICTURE clause are included
in determining the size of the data item but have no
effect on initialization of the data item. Therefore,
the VALUE of an edited item is presented in an edited

form.

Initialization takes place independent of any BLANK WHEN
ZERO or JUSTIFIED clause that may be specified.

A figurative constant may be substituted in both Format 1
and Format 2 wherever a literal is specified.

Condition~Name Rules

In a condition-name entry, the VALUE clause is required.
The VALUE clause and the condition-name itself are the only
two clauses permitted in the entry. The characteristics of
a condition-name are implicitly those of its conditional

variable.

Format 2 can be used only in connection with
condition-names. Wherever the THROUGH (THRU) phrase is
used, literal-l must be less than literal-2, literal-3 less

than literal-4, etc.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division:

In the File Section, the VALUE clause may be used only
in condition-name entries.

In the Working-Storage Section, the VALUE clause must
be used in condition-name entries. The VALUE clause
may also be used to specify the initial value of any
other data item; in which case the clause causes the
item to assume the specified value at the start of the
object program. If the VALUE clause is not used in an
item's description, the initial value is undefined.

Radio fhaek

- 96 -

RM/COBOL Language TRS-80 ° VALUE IS Clause

In the Linkage Section, the VALUE clause may be used
only in condition-name entries.

The VALUE clause must not be stated in a data description
entry that contains an OCCURS clause, or in an entry that is
subordinate to any entry containing a REDEFINES clause.

This rule does not apply to condition-name entries.

If the VALUE clause is used in an entry at the group level,
the literal must be a figurative constant or a nonnumeric
literal, and the group area is initialized without
consideration for the individual elementary or group items
contained within this group. The VALUE clause cannot be
stated at the subordinate levels within this group.

The VALUE clause must not be written for a group containing
items with descriptions including JUSTIFIED, SYNCHRONIZED,
or USAGE (other than USAGE IS DISPLAY).

Radio fhaek

- 97 -

RENAMES Clause TRS-80 ® RM/COBOL Language

The RENAMES Clause

The RENAMES clause permits alternative, possibly
overlapping, groupings of elementary items.

FORMAT
66 data-name-1l;

RENAMES data-name-2 [{THROUGH} data-name-3].
{THRU }

NOTE: Level-number 66, data-name-1 and the semicolon
are shown in the above format to improve
clarity. Level-number and data-name-1 are not
part of the RENAMES clause.

All RENAMES entries referring to data items within a given
logical record must immediately follow the last data
description entry of the associated record description

entry.

Data-name-2 and data-name-3 must be names of elementary
items or groups of elementary items in the same logical
record, and cannot be the same data-name. A 66 level entry
cannot rename another 66 level entry nor can it rename a 77,
88, or @1 level entry.

Data-name-1 cannot be used as a qualifier, and can only be
qualified by the names of the associated level @1 or FD
entries. Neither data-name-2 nor data-name-3 may have an
OCCURS clause in its data description entry nor be
subordinate to an item that has an OCCURS clause in its data

description entry.

The beginning of the area described by data-name-3 must not
be to the left of the beginning of the area described by
data-name-2. The end of the area described by data-name-3
must be to the right of the end of the area described by
data-name-2. Data-name-3, therefore, cannot be subordinate

to data-name=-2.

Data-name-2 and data-name-3 may be qualified.

Radio fhaek

- 98 -

RM/COBOL_Language TRS-80 °© RENAMES Clause

None of the items within the range, including data-name-2
and data-name-3, if specified, can be an item whose size is
variable as defined in the OCCURS clause.

One or more RENAMES entries can be written for a logical
record.

When data-name-3 is specified, data-name-1l is a group item
which includes all elementary items starting with
data-name-2 (if data-name-2 is an elementary item) or the
first elementary item in data-name-2 (if data-name-2 is a
group item), and concluding with data-name-3 (if data-name-3
is an elementary item) or the last elementary item in
data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-2 can be either
a group or an elementary item; when data-name-2 is a group
item, data-name-1 is treated as a group item, and when
data-name-2 is an elementary item, data-name-1 is treated as
an elementary item.

The words THRU and THROUGH are equivalent.

Radio fhaek

- 99 -

. Data Structures __ TRS-80 ° ——KRM/COBOL _Language

DATA STRUCTURES

Classes of Data

The five categories of data items (see the PICTURE clause)
are grouped into three classes:

alphabetic
numeric
alphanumeric

For alphabetic and numeric, the classes and categories are
synonymous.

The alphanumeric class includes the categories of
alphanumeric edited, numeric edited and alphanumeric
(without editing).

Every elementary item except for an index data item belongs
to one of the classes and further to one of the categories.
The class of a group item is treated at object time as
alphanumeric regardless of the class of elementary items
subordinate to that group item.

The following chart depicts the relationship of the class
and categories of data items:

LEVEL OF ITEM | CLASS | CATEGORY

Alphabetic Alphabetic

Numeric Numeric

Elementary
Alphanumeric Numeric Edited
Alphanumeric Edited
Alphanumeric

Nonelementary Alphanumeric Alphabetic

(Group) Numeric

Numeric Edited
Alphanumeric Edited
Alphanumeric

Radio fhaek

1gg

RM/COBOL Language TRS-80 °© Data Structures

Representation of Numeric Items

The value of a numeric item may be represented in either
binary, decimal or packed decimal form depending on the
USAGE clause associated with the item. There are two ways
of expressing decimal: DISPLAY and COMPUTATIONAL. Binary is
COMPUTATIONAL-1. Packed decimal is COMPUTATIONAL-3.

The selection of the proper representation is dependent upon
the usage of the numeric item. Items which must be used for
input and output should be of DISPLAY usage to eliminate
conversions to external forms. For efficiency of arithmetic
operations, COMPUTATIONAL, COMPUTATIONAL-1, or
COMPUTATIONAL-3 should be used. To reduce conversions and
increase efficiency, types should not be mixed in operations
except where required by program needs.

Representation of Algebraic Signs

Algebraic signs fall into two categories:

operational signs which are associated with signed
numeric data items, and signed numeric literals to
indicate their algebraic properties; and

editing signs which appear to identify the sign of the
item.

For DISPLAY, COMPUTATIONAL, and COMPUTATIONAL-3, an unsigned
numeric item is assumed to have an operational sign which is
positive and will receive the absolute value of signed

items. A signed numeric item maintains the operational sign

as a separate trailing character.

For COMPUTATIONAL-1 (which is always signed), the
operational sign is maintained as part of the item in two's
complement signed binary form.

Editing signs are inserted into a data item through the use
of the sign control symbols of the PICTURE clause.

Radio fhaek

- 101 -

Data Structures TRS-80 ® RM/COBOL Langquage

Standard Alignment Rules

The standard rules of positioning data within an elementary
item depend on the category of the receiving item:

If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved
to the receiving character positions with zero fill
or truncation on either end as required.

b. When an assumed decimal point is not explicitly
specified the data item is treated as if it had an
assumed decimal point immediately following its
righmost character and is aligned as in a. above.

If the receiving data item is a numeric edited data
item, the data moved to the edited data item is aligned
by decimal point with zero-fill or truncation at either
end as required within the receiving character
positions of the data item, except where editing
requirements cause replacement of the leading zeros.

If the receiving data item is alphanumeric (other than
a numeric edited data item), alphanumeric edited or
alphabetic, the sending data is moved to the receiving
character positions and aligned at the leftmost
character position in the data item with space-fill or
truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item,
these standard rules are modified as descried in the
JUSTIFIED clause.

Radio fhaek

...lﬂz..

RM/COBOL Language TRS-80 °© ualification

QUALIFICATION

Every user-specified name that defines an element in COBOL
source program must be unique, either because no other name
has the identical spelling and hyphenation, or because the
name exists within a hierarchy of names such that references
to the name can be made unique by mentioning one or more of
the higher levels of the hierarchy. The higher levels are
called qualifiers and this process that specifies uniqueness
is called qualification. Enough qualification must be
mentioned to make the name unique; however, it may not be
necessary to mention all levels of the hierarchy. Within
the Data Division, all data-names used for qualification
must be associated with a level indicator or a level-number.
Therefore, two identical data-names must not appear as
entries subordinate to a group item unless they are capable
of being made unique through qualification.

In the hierarchy of qualification, names associated with a

level indicator are the most significant, then those names

associated with level-number @1, then names associated with
level-number @2, ..., 49. The most significant name in the
hierarchy must be unique and cannot be qualified.

Qualification is performed by following a data-name, by one
or more phrases composed of a qualifier preceded by IN or
OF. 1IN and OF are logically equivalent.

FORMAT 1

{data-name-1} [{OF} data-name-2] ...
{condition-name} {IN}

FORMAT 2

paragraph-name [{OF} section-name]

{IN}

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level
and within the same hierarchy as the name it qualifies.

Radio fhaek

- 163 -

Qualification TRS-80 © RM/COBOL Language

The same name must not appear at two levels in a
hierarchy.

If a data name is assigned to more than one data item
in a source program, the data_name must be qualified
each time it is referred to in the Procedure,
Environment, and Data Divisions (except in the
REDEFINES clause where qualification is unnecessary and
must not be used.)

A paragraph-name must not be duplicated within a
section. When a paragraph-name is qualified by a
section-name, the word SECTION must not appear. A
paragraph-name need not be qualified when referred to
from within the same section.

A data-name cannot be subscripted when it is being used
as a qualifier.

A name can be qualified even though it does not need
qualification: if there is more than one combination
of qualifiers that ensures uniqueness, then any such
set can be used. The complete set of qualifiers for a
data-name must not be the same as any partial set of
qualifiers for another data-name. Qualified data-names
may have any number of qualifiers up to a limit of 49.

Radie fhaek

- 104 -

RM/COBOL_Language TRS-80 © Subscripting

SUBSCRIPTING

Subscripts can be used only when reference is made to an
individual element within a list of a table of like elements
that have not been assigned individual data-names (see The

OCCURS Clause).

The subscript can be represented either by a numeric literal
that is an integer or by a data-name. The data name must be
a numeric elementary item that represents an integer. When
the subscript is represented by a data-name, the data-name
may be qualified but not subscripted.

The subscript may be signed and, if signed, it must be
positive. The lowest possible subscript value is 1. This
value points to the first element of the table. The next
sequential elements of the table are pointed to by
subscripts whose values are 2, 3, ...n. The highest
permissible subscript value, in any particular case, is the
maximum number of occurrences of the item as specified in

the OCCURS clause.

The subscript, or set of subscripts, that identifies the
table element id delimited by the balanced pair of
separators, left parenthesis and right parenthesis,
following the table element data-name. The table element
data-name appended with a subscript is called a subscripted
data-name or an identifier. When more than one subscript is
required, they are written in the order of successively less
inclusive dimensions of the data organization.

FORMAT

{data-name } (subscript-l [subscript-2 [,subscript-311)
{condition-name}

Radio fhaek

- 185 -

Indexing TRS-80 ° RM/COBOL Langquage

INDEXING

References can be made to individual elements within a table
of like elements by specifying indexing for that reference.
An index is assigned to that level of the table by using the
INDEXED BY phrase in the definition of a table. A name
given in the INDEXED BY phrase is know as an index-name and
is used to refer to the assigned index. The value of an
index corresponds to the occurrence number of an element in
the associated table. An index-name must be initialized
before it is used as a table reference. An index-name can
be given an initial value by a SET statement, or a FORMAT 4
PERFORM statement.

Direct indexing is specified by using an index-name in the
form of a subscript. Relative indexing is specified when
the index-name is followed by the operator + or -, followed
by an unsigned integer numeric literal all delimited by the
balanced pair of separators, left parenthesis and right
parenthesis, following the table element data-name. The
occurrence number resulting from relative indexing is
determined by incrementing (where the operator + is used) or
decrementing (when the operator - is used), by the value of
the literal, the occurrence number represented by the value
of the index. When more than one index-name is required,
they are written in the order of successively less inclusive
dimensions of the data organization.

At the time of execution of a statement which refers to an
indexed table element, the value contained in the index
referenced by the index-name associated with the table
element must neither correspond to a value less than one (1)
nor to a value greater than the highest permissible
occurrence number of an element of the associated table.
This restriction also applies to the value resultant from

relative indexing.

FORMAT
{data—-name} ({index-name-1 [{+} literal-21}
{condition-name} {literal-1l {-} }
[, {index-name-2 [{+} literal-4]}
{literal-3 {-} }
[, {index-name-3 [{+} literal-61}11)
{literal-5 {-} }

Radio fhaek

lgs

RM/COBOL Language TRS-80 © Identifier

IDENTIFIER

An identifier is a term used to reflect that a data-name, if
not unique in a program, must be followed by a syntactically
correct combination of qualifiers, subscripts or indices
necessary to ensure uniqueness. The general formats for
identifiers are:

FORMAT 1

data-name-1 [{OF} data-name-2] ... [(subscript-l
{IN}

[,subscript-2 [,subscript-3]11)1]
FORMAT 2

data-name-1 [{OF} data-name-2] ... [({index-name-1 [{+} literal-2]}
{literal-1l {-} }
{IN}

[, {index-name-2 [{+} literal-4]}
{literal-3 {-} }

[,{index-name-3 [{+} literal-61}11)1]
{literal-5 {-} }

Restrictions on qualification, subscripting and indexing
are:

A data-name must not itself be subscripted nor indexed
when that data-name is being used as an index,
subscript or qualifier.

Indexing is not permitted where subscripting is not
permitted.

An index may be modified only by the SET and PERFORM
statements. Data items described by the USAGE IS INDEX
clause permit storage of the values associated with
index-names as data in a form specified by the
compiler. Such data items are called index data items.

Literal-l, literal-3, literal-5 in the above format
must be positive numeric integers. Literal-2,
literal-4, literal-6, must be unsigned numeric
integers.

Radie fhaek

..lﬂ']..

Condition-Name 1FF255-53CJ(@ RM/COBOL Langquage

CONDITION-NAME

Each condition-name must be unique, or be made unique
through qualification and/or indexing, or subscripting.

If qualification is used to make a condition-name unique,
the associated conditional variable may be used as the first
qualifier. If qualification is used, the hierarchy of names
associated with the conditional variable or the conditional
variable itself must be used to make the condition-name

unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names
also require the same combination of indexing or
subscripting.

The format and restrictions on the combined use of
qualification, subscripting, and indexing of condition-names
is exactly that of 'identifier' except that data-name-1 is

replaced by condition-name-1.

In the general formats, 'condition-name' refers to a
condition-name qualified, indexes or subscripted, as
necessary.

Radio Sfhaek

_lgg-

RM/COBOL Language TRS-80 ® Table Handling

TABLE HANDLING

Tables of data are common components of business data
processing problems. Although items of data that make up a
table could be described as contiguous data items, there are
two reasons why this approach is not satisfactory. First,
from a documentation stanpoint, the underlying homogeneity
of the items would not be readily apparent; and second, the
problem of making available an individual element of such a
table would be severe when there is a decision as to which
element is to be made available at object time.

Tables composed of contiguous data items redefined in COBOL
by including the OCCURS clause in their data description
entries.

This clause specifies that the item is to be repeated as
many times as stated. The item is considered to be a table
element and its name and description apply to each
repetition or occurrence. Since each occurrence of a table
element does not have asigned to it a unique data-name,
reference to a desired occurrence may be made only by
specifying the data-name of the table element together with
the occurrence number of the desired table element.
Subscripting and indexing are the two methods that are used
to specify the occurrence number of a desired table element.

Table Definition

To define a one-dimensional table, the programmer uses an
OCCURS clause as part of the data description of the table
element, but the OCCURS clause must not appear in the
description of group items which contain the table element.

Example 1:

g1 TABLE-1
g2 TABLE-ELEMENT OCCURS 20 TIMES.
#3 NAME
g3 SSAN

Radie fhaek

lgg

Table Handling TRS-80 °© RM/COBOL Language

Defining a one-dimensional table within each occurrence of
an element of another one-dimensional table gives rise to a
two-dimensional table. To define a two-dimensional table,
then, an OCCURS clause must appear in the data description
of the element of the table, and in the description of only
one group item which contains that table. In the
description of a three-dimensional table, the OCCURS clause
should appear in the data description of 2 nested group
items which contain the element. In COBOL, tables of up to
3 dimensions are permitted.

Example 2 shows a table which has one dimension for
CONTINENT-NAME, two dimensions for COUNTRY-NAME, and three
dimensions for CITY-NAME and CITY-POPULATION. The table
includes 10¢,519 data items--1§ for CONTINENT-NAME, 5@@ for
COUNTRY-NAME, 50,009 for CITY-NAME, and 50,0008 for
CITY-POPULATION. Within the table there are ten occurrences
of CONTINENT-NAME. Within each CONTINENT-NAME there are 5§
occurrences of COUNTRY-NAME and within each COUNTRY-NAME
there are one hundred occurrences of CITY-NAME and
CITY-POPULATION.

Example 2:

@1 CENSUS-TABLE.
#5 CONTINENT-TABLE OCCURS 1§ TIMES.
19 CONTINENT-NAME PIC XXXXXX.
19 COUNTRY-TABLE OCCURS 5@ TIMES.
15 COUNTRY-NAME PIC XXXXXXXX.
15 CITY-TABLE OCCURS 10@ TIMES.
2¢ CITY-NAME PIC XXXXXXXXXX.
2¢ CITY-POPULATION PIC 999999999999.

References to Table Items

Wherever the user refers to a table element, the reference
must indicate which occurrence of the element is intended.
For access to a one-dimensional table, the occurrence number
of the desired element provides complete information. For
access to tables of more than one dimension, an occurrence
number must be supplied for each dimension of the table
accessed. In Example 2 then, a reference to the 4th
CONTINENT-NAME would be complete, whereas a reference to
the 4th COUNTRY-NAME would not. To refer to a COUNTRY-NAME,
which is an element of a two-dimensional table, the user
must refer to, for example, the 4th COUNTRY-NAME within the
6th CONTINENT~-TABLE.

Radio fhaek

- 119 -

RM/COBOL_Language TRS-80 °© Table Handling

One method by which occurrence numbers may be specified is
to append one or more subscripts to the data-name. A
subscript is an integer whose value specifies the occurrence
number of an element. The subscript can be represented
either by a literal which is an integer or by a data-name
which is defined elsewhere as a numeric elementary item with
no character positions to the right of the assumed decimal
point. 1In either case, the subscript, enclosed in
parenthesis, 1is written immediately following the name of
the table element. A table reference must include as many
subscripts as there are dimensions in the table whose
element is being referenced. That is, there must be a
subscript for each OCCURS clause in the hierarchy containing
the data-name, including the data-name itself. 1In Example
2, references to CONTINENT-NAME require only one subscript,
reference to COUNTRY-NAME requires two, and references to
CITY-NAME and CITY-POPULATION require three.

When more than one subscript is required, they are written
in order of successively less inclusive dimensions of the
data organization. When a data-name is used as a subscript,
it may be used to refer to items in many different tables.
These tables need not have elements of the same size. The
data-name may also appear as the only subscript with one
item and as one of two or three subscripts with another
item. Also, it is permissible to mix literal and data-name
subscripts, for example: CITY-POPULATION (14, NEWKEY, 42).

Another method of referring to items in a table is indexing.
To use this technique, the programmer assigns one or more
index-names (defined with the INDEXED-BY phrase of the
OCCURS clause) to an item whose data description contains an
OCCURS clause. There is no separate entry to describe the
index-name since its definition is completely
hardware-oriented and it is not considered data per se. At
object time the contents of the index-name will correspond
to an occurrence number for that specific dimension of the
table to which the index-name was assigned. The initial
value of an index-name at object time is not determinable
and the index-name must be initialized by the SET statement

before use. :

When a reference is made to a table element, or to an item
within a table element, and the name of the item is followed
by its related index-name or names in parentheses, then each
occurrence number required to complete the reference will be
obtained from the respective index-name. The index-name
thus acts as a subscript whose value is used in any table
reference that specifies indexing.

Radio fhaek

- 111 -

RM/COBOL Language TRS-80 ® PROCEDURE DIVISION

VI

PROCEDURE DIVISION

Radio fhaek

- 113 -

RM/COBOL Language TRS-80 ® PROCEDURE DIVISION

THE PROCEDURE DIVISION

The Procedure Division must be included in every COBOL
source program. This division may contain declaratives and
nondeclarative procedures.

The Procedure Division is identified by and must begin with
the following header:

PROCEDURE DIVISION [USING data-name-~l [,data-name-2] ...] .

The USING phrase is present if and only if the object
program is to function under the control of a CALL
statement, and the CALL statement in the calling program
contains a USING phrase.

Each of the operands in the USING phrase of the Procedure
Division header must be defined as a data item in the
Linkage Section of the program in which this header occurs,
and it must have a g1 or 77 level-number.

Within a called program, Linkage Section data items are
processed according to their descriptions given in the
called program. Of those items defined in the Linkage
Section only data-name-1l, data-name-2, items subordinate to
these data-names, and condition-names and/or index-name
associated with such data-names and/or subordinate data
items, may be referenced in the Procedure Division.

When the USING phrase is present, the object program
operates as if data-name-l1 of the Procedure Division header
in the called program and data-name-1 in the USING phrase of
the CALL statement in the calling program refer to a single
set of data that is equally available to both the called and
calling programs. Their definitions must contain the same
data descriptions; however, they need not be the same name.
In like manner, there is an equivalent relationship between
data-name-2, ..., in the USING phrase of the called program
and data-name-2, ..., in the USING phrase of the CALL
statement in the calling program. A data-name must not
appear more than once in the USING phrase in the Procedure
Division header of the called program; however, a given
data-name may appear more than once in the same USING phrase
of a CALL statement.

Radio fhaek

- 115 -

D
PROCEDURE DIVISION TRS-80 ° RM/COBOL Language

Structure

The body of the Procedure Division must conform to one of
the following formats:

FORMAT 1

PROCEDURE DIVISION [USING data-name-l [,data-name-2]...1].

[DECLARATIVES.

{section-name SECTION [segment-number]. declarative-sentence
[Wagrap}x"me- [Sentalce] --] noo} so e
END DECLARATIVES.]

{section-name SECTION [segment-number].
[paragraph-name. [sentence] ...] ...} ...

[END PROGRAM].

FORMAT 2

PROCEDURE DIVISION [USING data-name-l [,data-name-2]...].

{paragraph—name. [sentence] ...} ...

[END PROGRAM] .

The segment-number must be an integer ranging in value from
g through 127.

If the segment-number is omitted from the section header,
the segment-number is assumed to be #.

Sections in the declaratives must contain segment-numbers
less than 5.

All sections which have the same segment-number constitute a
program segment. Sections with the same segment-number must
be physically contiguous in the source program.

Radie fhaek

- 116 -

RM/COBOL Language TRS-80 ® PROCEDURE DIVISION

Segments with segment-numbers @ through 49 belong to the
fixed portion of the object program. Segments with
segment—-numbers 5@ through 127 are independent segments.
Independent segments must follow fixed segments.

Declaratives

Declarative sections must be grouped at the beginning of the
Procedure Division preceded by the key word DECLARATIVES and
followed by the key words END DECLARATIVES.

Procedures

A procedure is composed of a paragraph, or group of
successive paragraphs, or a section, or a group of
successive sections within the Procedure Division. If one
paragraph is in a section, then all paragraphs must be in
sections. A procedure-name is a word used to refer to a
paragraph or section. It consists of a paragraph-name
(which may be qualified), or a section-name.

A section consists of a section header followed by zero, or
more successive paragraphs. A section ends immediately
before the next section or at the end of the Procedure
Division or, in the declaratives portion of the Procedure
Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a
period and a space and by zero, or more successive
sentences. A paragraph ends immediately before the next
paragraph-name or section-name or at the end of the
Procedure Division or, in the declaratives portion of the
Procedure Division, at the key words END DECLARATIVES. A
paragraph-name must not be duplicated within a section.

Execution

Execution begins with the first statement of the Procedure
Division, excluding declaratives. Statements are then
executed in the order in which they are presented for
compilation, except where the rules indicate some other
order.

Radio fhaek

- 117 -

Procedure References 'TF?ES-EBCJ@> RM/COBOL Language

PROCEDURE REFERENCES

A procedure is referred to by its paragraph-name or
section-name. Paragraph-names may be qualified by the
section-name of the section containing the paragraph,
whether or not it needs qualification. When referring to a
section-name or when using a section-name as a qualifier,
the word SECTION must not appear. Qualification is performed
by following a paragraph-name with a section-name preceded
by IN or OF. 1IN and OF are logically equivalent. The
general format for paragraph qualification is:

paragraph-name [{OF} section-name]
{IN}

A paragraph-name need not be qualified when referred to from
within the same section or when the paragraph-name is
unique.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control
from statement to statement in the sequence in which they
were written in the source program unless an explicit
transfer of control overrides this sequence or there is no
next executable statement to which control can be passed.
The transfer of control from statement to statement occurs
without the writing of an explicit Procedure Division
statement, and therefore, is an implicit transfer of
control.

COBOL provides both explicit and implicit means of altering
the implicit control transfer mechanism.

In addition to the implicit transfer of control between
consecutive statements, implicit transfer of control also
occurs when the normal flow is altered without the execution
of a procedure branching statement. COBOL provides the
following types of implicit control flow alterations which
override the statement-to-statement transfers of control:

If a paragraph is being executed under control of
another COBOL statement (for example, PERFORM and USE)
and the paragraph is the last paragraph in the range of

Radio fhaek

- 118 -

RM/COBOL Language TRS-80 ° Procedure References

the controlling statement, then an implied transfer of
control occurs from the last statement in the paragraph
to the control mechanism of the last executed
controlling statement.

Further, if a paragraph is being executed under the
control of a PERFORM statement which causes iterative
execution and that paragraph is the first paragraph in
the range of that PERFORM statement, an implicit
transfer of control occurs between the control
mechanism associated with that PERFORM statement and
the first statement in that paragraph for each
iterative execution of the paragraph.

When any COBOL statement is executed which results in
the execution of a declarative section, an implicit
transfer of control to the declarative section occurs.
Note that another implicit transfer of control occurs
after execution of the declarative.

An explicit transfer of control consists of an alteration of
the implicit control transfer mechanism by the execution of
a procedure branching or conditional statement. An explicit
transfer of control can be caused only by the execution of a
procedure branching or conditional statement. The execution
of the procedure branching statement ALTER does not in
itself constitute an explicit transfer of control, but
affects the explicit transfer of control that occurs when
the associated GO TO statement is executed.

In this document, the term 'next executable statement' is
used to refer to the next COBOL statement to which control
is transferred according to the rules above and the rules
associated with each language element in the Procedure

Division.
There is no next executable statement following:

The last statement in a declarative section when the
paragraph in which it appears is not being executed
under the control of some other COBOL statement. 1In
COBOL, the result would be an implicit transfer of
control to the first nondeclarative statement.

The last statement in a program when the paragraph in
which it appears is not being executed under the
control of some other COBOL statement. The result
would be as if an implicit STOP RUN statement were

executed.

Radie fhaek

- 119 -

Segmentation TRS-80 ® RM/COBOL Language

SEGMENTATION

COBOL segmentation is a facility that provides a means by
which the user may communicate with the compiler to specify
object program overlay requirements. COBOL segmentation
deals only with segmentation of procedures.

Segments

When segmentation is used, the entire Procedure Division
must be in sections. 1In addition, each section must be
classified as belonging either to the fixed portion or to
one of the independent segments of the object program as
determined by the assignment of segment numbers. All source
paragraphs which contain the same segment-numbers can range
from @@ through 127, it is possible to subdivide any object
program into a maximum of 128 segments. Segmentation in no
way affects the need for qualification of procedure-names to
insure uniqueness.

Fixed Portion

The fixed portion is defined as that part of the object
program which is always in memory. This portion of the
program is composed of segments with segment-numbers #
through 49.

Independent Segments

An independent segment is defined as part of the object
program which can overlay, and can be overlaid by, another
independent segment. An independent segment has a
segment-number 5@ through 127.

An independent segment is in its initial state whenever
control is transferred (either implicitly or explicitly) to
that segment for the first time during the execution of a
program.

On subsequent transfers of control to the segment, an
independent segment is also in its initial state when:

Radio fhaek

- 129 -

RM/COBOL_Langquage TRS-80 °© egmentation

Control is transferred to that segment as a result of
the implicit transfer of control between consecutive
statements from a segment with a different
segment-number.

Control is transferred explicitly to that segment from
a segment with a different segment-number.

On subsequent transfer of control to the segment, an
independent segment is in its last-used state when control
is transferred implicitly to that segment from a segment
with a different segment-number.

Segmentation Classification

Sections which are to be segmented are classified using a
system of segment-numbers and the following criteria:

Logic Requirements--Sections which must be available
for reference at all times, or which are referred to
very frequently, are normally classified as belonging
to one of the permanent segments; sections which are
used less frequently are normally classified as
belonging to one of the independent segments, depending
on logic requirements.

Frequency of Use--Generally, the more frequently a
section is referred to, the lower its segment-number;
the less frequently it is referred to, the higher its
segment—-number.

Relationship to Other Sections —-- Sections which
frequently communicate with one another should be given
the same segment-numbers.

Segmentation Control

The logical sequence of the program is the same as the
physical sequence except for specific transfers of control.
Control may be transferred within a source program to any

Radio fhaek

- 121 -

Segmentation TRS-80 ® RM/COBOL_Langquage

paragraph in a section; that is, it is not mandatory to
transfer control to the beginning of a section.

Restrictions on Program Flow

When segmentation is used, the following restrictions are
placed on the ALTER and PERFORM statements.

The ALTER STATEMENT

A GO TO statement in a section whose segment-number is
greater than or equal to 5@ must not be referred to by an
ALTER statement in a section with a different
segment-number.

The PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in
an independent segment can have within its range, in
addition to any declarative sections whose execution is
caused within that range, only one of the following:

Sections and/or paragraphs wholly contained on one or
more fixed segments, or

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment
can have within its range, in addition to any declarative
sections whose execution is caused within that range, only
one of the following:

Sections and/or paragraphs wholly contained in one or
more fixed segments, or

Sections and/or paragraphs wholly contained in the same
independent segment as that PERFORM statement.

Radio fhaek

- 122 -

RM/COBOL_Language TRS-80 ° USE _Statement

THE USE STATEMENT

The USE statement specifies procedures for input-output
error handling that are in addition to the standard
procedures provided by the input-output control system. It
is a compiler directing statement required in each
declarative section.

FORMAT

USE AFTER STANDARD {EXCEPTION}
{ERROR }

PROCEDURE ON {file-name-l [,file-~name-2] ...
{INPUT
{OUTPUT
{I-0
{EXTEND

Nt Nt Nt Nged et

A USE statement, when present, must immediately follow a
section header in the declaratives section and must be
followed by a period followed by a space. The remainder of
the section must consist of zero, one or more procedural
paragraphs that define the procedures to be used.

The USE statement itself is never executed; it merely
defines the conditions calling for the execution of the USE

procedure.

The same file-name can appear in only one USE statement.

The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

The designated procedures can be executed by the
input-output system after completing the standard
input-output error routine, or upon recognition of the
INVALID KEY or AT END conditions, when the INVALID KEY
phrase or AT END phrase, respectively, has not been
specified in the input-output statement.

After execution of a USE procedure, control is returned to
the invoking routine.

Within a USE procedure, there must not be any reference to

Radio fhaek

- 123 -

USE Statement TRS-80 °© RM/COBOL Language

any nondeclarative procedures. Conversely, in the
nondeclarative portion there must be no reference to
procedure-names that appear in the declarative portion,
except that PERFORM statements may refer to a USE statement
or to the procedures associated with such a USE statement.

Within a USE procedure, there must not be the execution of
any statement that would cause the execution of a USE
procedure that had previously been invoked and had not yet
returned control to the invoking routine.

USE Example:

PROCEDURE DIVISION.
DECLARATIVES.
IO-ERROR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON I-O.
IO-ERROR~ROUTINE.
DISPLAY "INPUT-OUTPUT ERROR OCCURRED".
ACCEPT CONTINUE-FLAG POSITION ZERO.
IF CONTINUE-FLAG = "NO" STOP RUN.
END DECLARATIVES.

Radie fhaek

- 124 -

RM/COBOL Lanquage TRS-80 © Arithmetic Statements

ARITHMETIC STATEMENTS

The arithmetic statements ADD, COMPUTE, DIVIDE, MULTIPLY,
and SUBTRACT have several common features:

The data descriptions of the operands need not be the
same; any necessary conversion and decimal point
alignment is supplied throughout the calculation.

Arithmetic operations are calculated in either binary,
decimal,packed decimal, or mixed depending on the USAGE
of the operands and receiving item according to the
following rules:

If the receiving data item of a divide operation
is DISPLAY or COMPUTATIONAL, the operation is
always calculated in decimal with any necessary
conversions.

Intermediate and final results are calculated in
binary if all preceding intermediate results are
binary and the next operand has COMPUTATIONAL-1
usage (except as noted in previous paragraph).
Otherwise, the remaining intermediate and final
results are calculated in decimal with any
necessary conversions.

The maximum size of each operand is eighteen (18)
decimal digits. The composite of operands, which is a
hypothetical data item resulting from the super-
imposition of specified operands in a statement aligned
on their decimal points, must not contain more than
eighteen decimal digits.

Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric
elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic
expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses. Any
arithmetic expression may be preceded by a unary operator.
The permissible combinations of variables, numeric literals,
arithmetic operator and parentheses are given in Combination
of Symbols in Arithmetic Expressions Table.

Radio Shaek

- 125 -

Arithmetic Statements TRS-80 ° RM/COBOL Language

Those identifiers and literals appearing in an arithmetic
expression must represent either numeric elementary items or
numeric literals on which arithmetic may be performed.

Arithmetic Operators

There are four binary arithmetic operators and two unary
arithmetic operators that may be used in arithmetic

expressions. They are represented by specific characters
that must be preceded by a space and followed by a space.

Binary Arithmetic

Operators Meaning
+ Addition
= Subtraction
L Multiplication
/ Division

Unary Arithmetic

Operators Meaning

+ The effect of multiplication

by numeric literal +1

- The effect of multiplication
by numeric literal -1.

Formation and Evaluation Rules

Parentheses may be used in arithmetic expressions to specify
the order in which elements are to be evaluated.

Expressions within parentheses are evaluated first, and
within nested parentheses, evaluation proceeds from the
least inc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>